This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of Moulouya River Basin (UMRB) situated in the east of Morocco. The Basin is an inland w...This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of Moulouya River Basin (UMRB) situated in the east of Morocco. The Basin is an inland water-shed with a total area of approximately 10,000 km2, stretching in the junction between the Middle Atlas, the High Atlas Mountain and the Middle Moulouya basin. From ArcGIS ArcHydro framework data models, different parameters of the Moulouya River and its catchment area have been defined. DEM based ArcHydro model was run on Aster-GDEM V2 data at a horizontal spatial resolution of 30 meters. Several raster and vector products of the Upper Moulouya River and its catchment area have been defined at the end of the model. Final results of the models were discussed and compared with the reality. These results can be used in baseline for advanced hydrology and geomorphology research on the catchment area. They can support for decision-making on ground and surface water resource, distribution and management.展开更多
The purpose of this research is to define initial parameters of Inaouene river and its catchment areas using radar data and satellite data. The Inaouene river is situated at the east of Sebou basin in North-East of Mo...The purpose of this research is to define initial parameters of Inaouene river and its catchment areas using radar data and satellite data. The Inaouene river is situated at the east of Sebou basin in North-East of Morocco. The study has been done by two dataset: 1) Shuttle Radar Topography Mission (SRTM) at a horizontal spatial resolution of 90 meters, and 2) ASTER (Advanced Spaceborn Thermal Emissionand and Reflection Radiometer) of GDEM version 2 at a horizontal spatial resolution of 30 meters, using ArcHydro model. Several raster and vector products of the Inaouene river and its catchment area have been defined at the end of the model. Moreover, final results of the ArcHydro model were compared with each other and with the reality. The result of this study can be used in baseline and advanced hydrology and geomorphology research on the catchment area. Besides of that, the result can define a spatial boundary of study on Inaouene River and its catchment area. Moreover, it would have support for decision-making on ground and surface water resource, distribution and management.展开更多
文摘This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of Moulouya River Basin (UMRB) situated in the east of Morocco. The Basin is an inland water-shed with a total area of approximately 10,000 km2, stretching in the junction between the Middle Atlas, the High Atlas Mountain and the Middle Moulouya basin. From ArcGIS ArcHydro framework data models, different parameters of the Moulouya River and its catchment area have been defined. DEM based ArcHydro model was run on Aster-GDEM V2 data at a horizontal spatial resolution of 30 meters. Several raster and vector products of the Upper Moulouya River and its catchment area have been defined at the end of the model. Final results of the models were discussed and compared with the reality. These results can be used in baseline for advanced hydrology and geomorphology research on the catchment area. They can support for decision-making on ground and surface water resource, distribution and management.
文摘The purpose of this research is to define initial parameters of Inaouene river and its catchment areas using radar data and satellite data. The Inaouene river is situated at the east of Sebou basin in North-East of Morocco. The study has been done by two dataset: 1) Shuttle Radar Topography Mission (SRTM) at a horizontal spatial resolution of 90 meters, and 2) ASTER (Advanced Spaceborn Thermal Emissionand and Reflection Radiometer) of GDEM version 2 at a horizontal spatial resolution of 30 meters, using ArcHydro model. Several raster and vector products of the Inaouene river and its catchment area have been defined at the end of the model. Moreover, final results of the ArcHydro model were compared with each other and with the reality. The result of this study can be used in baseline and advanced hydrology and geomorphology research on the catchment area. Besides of that, the result can define a spatial boundary of study on Inaouene River and its catchment area. Moreover, it would have support for decision-making on ground and surface water resource, distribution and management.
文摘地势起伏度是斜坡地质灾害发育的重要地形因子之一,但目前在敏感性评价研究中较少考虑地势起伏度提取受提取单元尺度大小的影响这一因素。以山西省太原市西山地质块体为研究区,以ASTER GDEM V2和2012年研究区斜坡地质灾害分布信息为数据源,以ArcGIS为平台,以均值变点法对2×2,3×3,4×4,5×5,…,25×25共24个尺度开展了地势起伏度与地质灾害分布峰值、平均地势起伏度和地势起伏度峰值之间的关系分析。结果表明:最佳提取单元在斜坡地质灾害分布峰值、平均地势起伏度和地势起伏度峰值上表现不同,分别为9×9网格、12×12网格、12×12网格,综合考虑区域地貌演变和地质灾害演变因素,选择9×9网格作为研究区斜坡地质灾害敏感性评价时的最佳地势起伏度提取单元,最佳统计面积为0.0729 km2.