Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satelli...Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satellite World 3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar Topography Mission Digital Elevation Model version 3.0 (SRTM30) and the Advanced Space borne Thermal Emission and Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2) was statistically assessed using high accuracy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and ~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. In further analyses, we discovered that ALOS W3D30 and SRTM30 were much more accurate in regions where the height intervals were within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some earth and environmental applications in Nigeria. We recommend that this study should serve as a guide in the use of any of these DEMs for earth and environmental applications in Nigeria.展开更多
Digital Elevation Models(DEMs)contain topographic relief data that are vital for many geoscience applications.This study relies on the vertical accuracy of publicly available latest high-resolution(30 m)global DEMs ov...Digital Elevation Models(DEMs)contain topographic relief data that are vital for many geoscience applications.This study relies on the vertical accuracy of publicly available latest high-resolution(30 m)global DEMs over Cameroon.These models are(1)the ALOS World 3D-30 m(AW3D30),(2)the Shuttle Radar Topography Mission 1 Arc-Second CBand Global DEM(SRTM 1)and(3)the Advanced Spaceborne Thermal Emission and Reflection Global DEM Version 2(ASTER GDEM 2).After matching their coordinate systems and datums,the horizontal positional accuracy evaluation was carried out and it shows that geolocation errors significantly influence the vertical accuracy of global DEMs.After this,the three models are compared among them,in order to access random and systematic effects in the elevation data each of them contains.Further,heights from 555 GPS/leveling points distributed all over Cameroon are compared to each DEM,for their vertical accuracy determination.Traditional and robust statistical measures,normality test,outlier detection and removal were used to describe the vertical quality of the DEMs.The test of the normality rejected the hypothesis of normal distribution for all tested global DEMs.Overall vertical accuracies obtained for the three models after georeferencing and gross error removal in terms of Root Mean Square(RMS)and Normalized Median Absolute Deviation(NMAD)are:AW3D30(13.06 m and 7.75 m),SRTM 1(13.25 m and 7.41 m)and ASTER GDEM 2(18.87 m and 13.30 m).Other accuracy measures(MED,68.3% quantile,95% quantile)supply some evidence of the good quality of AW3D30 over Cameroon.Further,the effect of land cover and slope on DEM vertical accuracy was also analyzed.All models have proved to be worse in the areas dominated by forests and shrubs areas.SRTM 1 and AW3D30 are more resilient to the effects of the scattering objects respectively in forests and cultivated areas.The dependency of DEMs accuracy on the terrain roughness is evident.In all slope intervals,AW3D30 is performing better than SRTM 1 and ASTER GDEM 2 over Cameroon.AW3D30 is more representative of the external topography over Cameroon in comparison with two others datasets and SRTM 1 can be a serious alternative to AW3D30 for a range of DEM applications in Cameroon.展开更多
文摘Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satellite World 3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar Topography Mission Digital Elevation Model version 3.0 (SRTM30) and the Advanced Space borne Thermal Emission and Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2) was statistically assessed using high accuracy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and ~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. In further analyses, we discovered that ALOS W3D30 and SRTM30 were much more accurate in regions where the height intervals were within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some earth and environmental applications in Nigeria. We recommend that this study should serve as a guide in the use of any of these DEMs for earth and environmental applications in Nigeria.
文摘地势起伏度是斜坡地质灾害发育的重要地形因子之一,但目前在敏感性评价研究中较少考虑地势起伏度提取受提取单元尺度大小的影响这一因素。以山西省太原市西山地质块体为研究区,以ASTER GDEM V2和2012年研究区斜坡地质灾害分布信息为数据源,以ArcGIS为平台,以均值变点法对2×2,3×3,4×4,5×5,…,25×25共24个尺度开展了地势起伏度与地质灾害分布峰值、平均地势起伏度和地势起伏度峰值之间的关系分析。结果表明:最佳提取单元在斜坡地质灾害分布峰值、平均地势起伏度和地势起伏度峰值上表现不同,分别为9×9网格、12×12网格、12×12网格,综合考虑区域地貌演变和地质灾害演变因素,选择9×9网格作为研究区斜坡地质灾害敏感性评价时的最佳地势起伏度提取单元,最佳统计面积为0.0729 km2.
文摘Digital Elevation Models(DEMs)contain topographic relief data that are vital for many geoscience applications.This study relies on the vertical accuracy of publicly available latest high-resolution(30 m)global DEMs over Cameroon.These models are(1)the ALOS World 3D-30 m(AW3D30),(2)the Shuttle Radar Topography Mission 1 Arc-Second CBand Global DEM(SRTM 1)and(3)the Advanced Spaceborne Thermal Emission and Reflection Global DEM Version 2(ASTER GDEM 2).After matching their coordinate systems and datums,the horizontal positional accuracy evaluation was carried out and it shows that geolocation errors significantly influence the vertical accuracy of global DEMs.After this,the three models are compared among them,in order to access random and systematic effects in the elevation data each of them contains.Further,heights from 555 GPS/leveling points distributed all over Cameroon are compared to each DEM,for their vertical accuracy determination.Traditional and robust statistical measures,normality test,outlier detection and removal were used to describe the vertical quality of the DEMs.The test of the normality rejected the hypothesis of normal distribution for all tested global DEMs.Overall vertical accuracies obtained for the three models after georeferencing and gross error removal in terms of Root Mean Square(RMS)and Normalized Median Absolute Deviation(NMAD)are:AW3D30(13.06 m and 7.75 m),SRTM 1(13.25 m and 7.41 m)and ASTER GDEM 2(18.87 m and 13.30 m).Other accuracy measures(MED,68.3% quantile,95% quantile)supply some evidence of the good quality of AW3D30 over Cameroon.Further,the effect of land cover and slope on DEM vertical accuracy was also analyzed.All models have proved to be worse in the areas dominated by forests and shrubs areas.SRTM 1 and AW3D30 are more resilient to the effects of the scattering objects respectively in forests and cultivated areas.The dependency of DEMs accuracy on the terrain roughness is evident.In all slope intervals,AW3D30 is performing better than SRTM 1 and ASTER GDEM 2 over Cameroon.AW3D30 is more representative of the external topography over Cameroon in comparison with two others datasets and SRTM 1 can be a serious alternative to AW3D30 for a range of DEM applications in Cameroon.