【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechan...【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.展开更多
Validation studies of global Digital Elevation Models(DEMs)in the existing literature are limited by the diversity and spread of landscapes,terrain types considered and sparseness of groundtruth.Moreover,there are kno...Validation studies of global Digital Elevation Models(DEMs)in the existing literature are limited by the diversity and spread of landscapes,terrain types considered and sparseness of groundtruth.Moreover,there are knowledge gaps on the accuracy variations in rugged and complex landscapes,and previous studies have often not relied on robust internal and external validation measures.Thus,there is still only partial understanding and limited perspective of the reliability and adequacy of global DEMs for several applications.In this study,we utilize a dense spread of LiDAR groundtruth to assess the vertical accuracies of four medium-resolution,readily available,free-access and global coverage 1 arc-second(30 m)DEMs:NASADEM,ASTER GDEM,Copernicus GLO-30,and ALOS World 3D(AW3D).The assessment is carried out at landscapes spread across Cape Town,Southern Africa(urban/industrial,agricultural,mountain,peninsula and grassland/shrubland)and forested national parks in Gabon,Central Africa(low-relief tropical rainforest and high-relief tropical rainforest).The statistical analysis is based on robust accuracy metrics that cater for normal and non-normal elevation error distribution,and error ranking.In Cape Town,Copernicus DEM generally had the least vertical error with an overall Mean Error(ME)of 0.82 m and Root Mean Square Error(RMSE)of 2.34 m while ASTER DEM had the poorest performance.However,ASTER GDEM and NASADEM performed better in the low-relief and high-relief tropical forests of Gabon.Generally,the DEM errors have a moderate to high positive correlation in forests,and a low to moderate positive correlation in mountains and urban areas.Copernicus DEM showed superior vertical accuracy in forests with less than 40%tree cover,while ASTER and NASADEM performed better in denser forests with tree cover greater than 70%.This study is a robust regional assessment of these global DEMs.展开更多
Alteration minerals and silicification are typically associated with a variety of ore mineralizations and could be detected using multispectral remote sensing sensors as indicators for mineral exploration.In this inve...Alteration minerals and silicification are typically associated with a variety of ore mineralizations and could be detected using multispectral remote sensing sensors as indicators for mineral exploration.In this investigation,the Visible Near-Infra-Red(VNIR),Short-Wave Infra-Red(SWIR),and Thermal Infra-Red(TIR)bands of the ASTER satellite sensor derived layers were fused to detect alteration minerals and silicification in east the Kerdous inlier for cupriferous mineralization exploration.Several image processing techniques were executed in the present investigation,namely,Band Ratio(BR),Selective Principal Component Analysis(SPCA)and Constrained Energy Minimization(CEM)techniques.Initially,the BR and SPCA processing results revealed several alteration zones,including argillic,phyllic,dolomitization and silicification as well as iron oxides and hydroxides.Then,these zones were mapped at sub-pixel level using the CEM technique.Pyrophyllite,kaolinite,dolomite,illite,muscovite,montmorillonite,topaz and hematite were revealed displaying a significant distribution in relation with the eastern Amlen region lithological units and previously detected mineral potential zones using HyMap imaging spectroscopy.Mainly,a close spatial association between iron oxides and hydroxide minerals,argillic,and phyllic alteration was detected,as well as a strong silicification was detected around doleritic dykes unit in Jbel Lkest area.A weighted overlay approach was used in the integration of hydrothermal alteration minerals and silicification,which allowed the elaboration of a new mineral alteration map of study area with five alteration intensities.ASTER and the various employed processing techniques allowed a practical and cost effective mapping of alteration features,which corroborates well with field survey and X-ray diffraction analysis.Therefore,ASTER data and the employed processing techniques offers a practical approach for mineral prospection in comparable settings.展开更多
基金Guangxi Natural Science Foundation(2024GXNSFAA010469,2021GXNSFBA196028)Science and Technology Development Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT137,Guinongke 2022JM86)。
文摘【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.
基金supported by the(i)Commonwealth Scholarship Commission and the Foreign,Commonwealth and Development Office in the UK[Grant number NGCN-2021-239](ii)University of Cape Town Postgraduate Funding Office.
文摘Validation studies of global Digital Elevation Models(DEMs)in the existing literature are limited by the diversity and spread of landscapes,terrain types considered and sparseness of groundtruth.Moreover,there are knowledge gaps on the accuracy variations in rugged and complex landscapes,and previous studies have often not relied on robust internal and external validation measures.Thus,there is still only partial understanding and limited perspective of the reliability and adequacy of global DEMs for several applications.In this study,we utilize a dense spread of LiDAR groundtruth to assess the vertical accuracies of four medium-resolution,readily available,free-access and global coverage 1 arc-second(30 m)DEMs:NASADEM,ASTER GDEM,Copernicus GLO-30,and ALOS World 3D(AW3D).The assessment is carried out at landscapes spread across Cape Town,Southern Africa(urban/industrial,agricultural,mountain,peninsula and grassland/shrubland)and forested national parks in Gabon,Central Africa(low-relief tropical rainforest and high-relief tropical rainforest).The statistical analysis is based on robust accuracy metrics that cater for normal and non-normal elevation error distribution,and error ranking.In Cape Town,Copernicus DEM generally had the least vertical error with an overall Mean Error(ME)of 0.82 m and Root Mean Square Error(RMSE)of 2.34 m while ASTER DEM had the poorest performance.However,ASTER GDEM and NASADEM performed better in the low-relief and high-relief tropical forests of Gabon.Generally,the DEM errors have a moderate to high positive correlation in forests,and a low to moderate positive correlation in mountains and urban areas.Copernicus DEM showed superior vertical accuracy in forests with less than 40%tree cover,while ASTER and NASADEM performed better in denser forests with tree cover greater than 70%.This study is a robust regional assessment of these global DEMs.
文摘Alteration minerals and silicification are typically associated with a variety of ore mineralizations and could be detected using multispectral remote sensing sensors as indicators for mineral exploration.In this investigation,the Visible Near-Infra-Red(VNIR),Short-Wave Infra-Red(SWIR),and Thermal Infra-Red(TIR)bands of the ASTER satellite sensor derived layers were fused to detect alteration minerals and silicification in east the Kerdous inlier for cupriferous mineralization exploration.Several image processing techniques were executed in the present investigation,namely,Band Ratio(BR),Selective Principal Component Analysis(SPCA)and Constrained Energy Minimization(CEM)techniques.Initially,the BR and SPCA processing results revealed several alteration zones,including argillic,phyllic,dolomitization and silicification as well as iron oxides and hydroxides.Then,these zones were mapped at sub-pixel level using the CEM technique.Pyrophyllite,kaolinite,dolomite,illite,muscovite,montmorillonite,topaz and hematite were revealed displaying a significant distribution in relation with the eastern Amlen region lithological units and previously detected mineral potential zones using HyMap imaging spectroscopy.Mainly,a close spatial association between iron oxides and hydroxide minerals,argillic,and phyllic alteration was detected,as well as a strong silicification was detected around doleritic dykes unit in Jbel Lkest area.A weighted overlay approach was used in the integration of hydrothermal alteration minerals and silicification,which allowed the elaboration of a new mineral alteration map of study area with five alteration intensities.ASTER and the various employed processing techniques allowed a practical and cost effective mapping of alteration features,which corroborates well with field survey and X-ray diffraction analysis.Therefore,ASTER data and the employed processing techniques offers a practical approach for mineral prospection in comparable settings.