RANS是工程中常用的CFD数值模拟模型,文中基于该模型对SUBOFF裸艇体的水动力特性开展数值模拟研究.传统SST(shear stress transport model)湍流模型采用了线性涡黏假设,难以描述复杂流场的各向异性流动现象.另外,传统SST模型对分离点的...RANS是工程中常用的CFD数值模拟模型,文中基于该模型对SUBOFF裸艇体的水动力特性开展数值模拟研究.传统SST(shear stress transport model)湍流模型采用了线性涡黏假设,难以描述复杂流场的各向异性流动现象.另外,传统SST模型对分离点的预测还可能出现延迟,使阻力预测值偏小.针对传统SST湍流模型的缺陷,提出使用各向异性的ASST(anisotropic shear stress transport)湍流模型及其再附修正来研究SUBOFF裸艇体的数值模拟计算问题,并对SST、SST(Reattach)、ASST及ASST(Reattach)4种湍流模型进行了比较研究.结果表明,相较于传统SST模型,ASST模型在预测SUBOFF裸艇的阻力上具有更高精确度,再附修正可有效克服阻力预测值偏小的问题,ASST(Reattach)模型在4种湍流模型中阻力预报性能最优.另外,针对不同站位的轴向及径向平均速度分布特性问题,4种湍流模型均能够取得与模型试验一致的数值模拟结果.展开更多
The present study deals with the study of the velocity distribution and the separation phenomenon of flow of air over a two dimensional backward facing step. The flow of air over a backward facing step has been invest...The present study deals with the study of the velocity distribution and the separation phenomenon of flow of air over a two dimensional backward facing step. The flow of air over a backward facing step has been investigated numerically using FLUENT. Flow simulation has been carried out in a backward facing step having an expansion ratio (ratio of the height before and after the step) of 1:1.94 and the results obtained are compared with the published experimental results. Comparison of flow characteristics between steps with three different transitions is made. The variation ofreattachment length for all the three cases are analyzed for wide range of Reynolds number ranging from 100 to 7000 which covers the laminar, transition and turbulent flow of air. Simulation of the flow over steps with expansion ratios of 1:1.24, 1:1.38, 1:1.47, 1:1.53, 1:1.94, 1:2.20 are also carried out to examine the effect of different expansion ratios on the reattachment length. It is found that the primary reattachment length increases with increase in the expansion ratio. The primary reattachment length at the bottom wall downstream of the step is minimum for the step with round edged transition and maximum for the step with a vertical drop transition.展开更多
文摘The present study deals with the study of the velocity distribution and the separation phenomenon of flow of air over a two dimensional backward facing step. The flow of air over a backward facing step has been investigated numerically using FLUENT. Flow simulation has been carried out in a backward facing step having an expansion ratio (ratio of the height before and after the step) of 1:1.94 and the results obtained are compared with the published experimental results. Comparison of flow characteristics between steps with three different transitions is made. The variation ofreattachment length for all the three cases are analyzed for wide range of Reynolds number ranging from 100 to 7000 which covers the laminar, transition and turbulent flow of air. Simulation of the flow over steps with expansion ratios of 1:1.24, 1:1.38, 1:1.47, 1:1.53, 1:1.94, 1:2.20 are also carried out to examine the effect of different expansion ratios on the reattachment length. It is found that the primary reattachment length increases with increase in the expansion ratio. The primary reattachment length at the bottom wall downstream of the step is minimum for the step with round edged transition and maximum for the step with a vertical drop transition.