期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种用于方面情感四元组预测的最优意见树生成方法
1
作者 李博男 杨振宇 《山东理工大学学报(自然科学版)》 CAS 2025年第1期21-27,共7页
使用对比学习来增强树结构表示是将树结构应用于方面级情感分析(ABSA)的主流方法,但该方法本质上依赖于数据增强,而对原始文本应用数据增强可能会删除与下游预测相关的语义信息且难以获得最优结构。为解决上述问题,提出一种用于方面情... 使用对比学习来增强树结构表示是将树结构应用于方面级情感分析(ABSA)的主流方法,但该方法本质上依赖于数据增强,而对原始文本应用数据增强可能会删除与下游预测相关的语义信息且难以获得最优结构。为解决上述问题,提出一种用于方面情感四元组预测(ASQP)的结构熵约束的最优意见树生成方法,该方法通过文本编码器和直接生成正样本的结构编码器实现。结构编码器以意见树嵌入为输入,利用结构熵最小化原理提取意见树中固有的本质信息,并通过表示学习将该信息注入到文本表示中。在2个常见数据集上进行的实验验证了该方法的优越性。 展开更多
关键词 方面情感四元组预测 意见树 结构熵 贪心算法 方面级情感分析
在线阅读 下载PDF
基于完形填空的方面级情感四元组预测 被引量:2
2
作者 彭文忠 夏家莉 +4 位作者 万齐智 刘德喜 万本庭 曹重华 夏池玉 《计算机学报》 EI CAS CSCD 北大核心 2024年第8期1744-1768,共25页
方面情感四元组预测(ASQP)任务旨在从给定的评论语句中提取所有方面词以及相应的方面类别、观点表达和情感极性,有助于全面了解用户对产品或服务不同方面的评价情况.现有情感四元组预测方法主要存在以下局限:(1)判别式模型没有利用promp... 方面情感四元组预测(ASQP)任务旨在从给定的评论语句中提取所有方面词以及相应的方面类别、观点表达和情感极性,有助于全面了解用户对产品或服务不同方面的评价情况.现有情感四元组预测方法主要存在以下局限:(1)判别式模型没有利用prompt捕获情感元素之间的语义关系;(2)生成式模型要么简单地将情感元素类型标签组合形成prompt,缺乏理解标签类型涵义的语境;要么将离散模板作为解码器的输入,而编码器则无法捕获到模板中情感元素之间的语义关系.为了缓解这些问题,本文首先基于完形填空思想研制离散和连续2类prompt,提供理解4个情感元素类型涵义的语境,帮助模型更好地捕获情感元素之间的语义关系;然后,基于设计的prompt,提出C-ASQP框架,包含判别式模型DC-ASQP和生成式模型GC-ASQP.在DC-ASQP中,采用2阶段策略,先预测4个情感元素中2个较为容易的情感元素,再将预测结果嵌入到设计的prompt中,帮助模型理解情感元素类型的涵义,从而有效预测另外2个情感元素.在GC-ASQP中,将设计的prompt作为编码器的输入,借助预训练模型的学习模式,充分利用预训练模型蕴含的知识提升四元组的生成效果.实验结果显示,DC-ASQP模型在4个常用数据集上的F1值相比同类判别式最优模型分别提高4.70%、6.48%、6.97%和2.60%,GC-ASQP模型的F1值比最优基准模型分别提高0.86%、1.67%、0.15%和1.02%,验证了将ASQP建模为完形填空任务的有效性,所设计的2类prompt以及C-ASQP框架是有效的. 展开更多
关键词 方面情感四元组预测 完形填空 离散和连续prompt 判别式和生成式模型 C-asqp框架
在线阅读 下载PDF
Improve Chinese Aspect Sentiment Quadruplet Prediction via Instruction Learning Based on Large Generate Models
3
作者 Zhaoliang Wu Yuewei Wu +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2024年第3期3391-3412,共22页
Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ... Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach. 展开更多
关键词 ABSA asqp LLMs sentiment analysis Chinese comments
在线阅读 下载PDF
Syntax-Based Aspect Sentiment Quad Prediction by Dual Modules Neural Network for Chinese Comments
4
作者 Zhaoliang Wu Shanyu Tang +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2023年第5期2873-2888,共16页
Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accura... Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accurately recognize the sentiment quad in the target sentence,which includes the aspect term,the aspect category,the corresponding opinion term,and the sentiment polarity of opinion.Nevertheless,existing approaches lack knowledge of the sentence’s syntax,so despite recent innovations in ASQP,it is poor for complex cyber comment processing.Also,most research has focused on processing English text,and ASQP for Chinese text is almost non-existent.Chinese usage is more casual than English,and individual characters contain more information.We propose a novel syntactically enhanced neural network framework inspired by syntax knowledge enhancement strategies in other NLP studies.In this framework,part of speech(POS)and dependency trees are input to the model as auxiliary information to strengthen its cognition of Chinese text structure.Besides,we design a relation extraction module,which provides a bridge for the overall extraction of the framework.A comparison of the designed experiments reveals that our proposed strategy outperforms the previous studies on the key metric F1.Further experiments demonstrate that the auxiliary information added to the framework improves the final performance in different ways. 展开更多
关键词 ABSA asqp sentiment analysis Chinese comments
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部