Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ...Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach.展开更多
Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accura...Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accurately recognize the sentiment quad in the target sentence,which includes the aspect term,the aspect category,the corresponding opinion term,and the sentiment polarity of opinion.Nevertheless,existing approaches lack knowledge of the sentence’s syntax,so despite recent innovations in ASQP,it is poor for complex cyber comment processing.Also,most research has focused on processing English text,and ASQP for Chinese text is almost non-existent.Chinese usage is more casual than English,and individual characters contain more information.We propose a novel syntactically enhanced neural network framework inspired by syntax knowledge enhancement strategies in other NLP studies.In this framework,part of speech(POS)and dependency trees are input to the model as auxiliary information to strengthen its cognition of Chinese text structure.Besides,we design a relation extraction module,which provides a bridge for the overall extraction of the framework.A comparison of the designed experiments reveals that our proposed strategy outperforms the previous studies on the key metric F1.Further experiments demonstrate that the auxiliary information added to the framework improves the final performance in different ways.展开更多
基金supported by the National Key Research and Development Program(Nos.2021YFF0901705,2021YFF0901700)the State Key Laboratory of Media Convergence and Communication,Communication University of China+1 种基金the Fundamental Research Funds for the Central Universitiesthe High-Quality and Cutting-Edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China).
文摘Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach.
基金supported by the National Key Research and Development Program(No.2021YFF0901705,2021YFF0901700)the StateKey Laboratory ofMedia Convergence and Communication,Communication University of China+1 种基金the Fundamental Research Funds for the Central Universitiesthe High-quality and Cutting-edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China).
文摘Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accurately recognize the sentiment quad in the target sentence,which includes the aspect term,the aspect category,the corresponding opinion term,and the sentiment polarity of opinion.Nevertheless,existing approaches lack knowledge of the sentence’s syntax,so despite recent innovations in ASQP,it is poor for complex cyber comment processing.Also,most research has focused on processing English text,and ASQP for Chinese text is almost non-existent.Chinese usage is more casual than English,and individual characters contain more information.We propose a novel syntactically enhanced neural network framework inspired by syntax knowledge enhancement strategies in other NLP studies.In this framework,part of speech(POS)and dependency trees are input to the model as auxiliary information to strengthen its cognition of Chinese text structure.Besides,we design a relation extraction module,which provides a bridge for the overall extraction of the framework.A comparison of the designed experiments reveals that our proposed strategy outperforms the previous studies on the key metric F1.Further experiments demonstrate that the auxiliary information added to the framework improves the final performance in different ways.