期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于XGBoost和ASPSO的电力系统暂态稳定预防控制方法 被引量:7
1
作者 刘颂凯 袁铭洋 +3 位作者 杨超 阮肇华 张磊 刘旭 《电网与清洁能源》 CSCD 北大核心 2023年第10期9-18,共10页
该文提出了一种极限梯度提升(extreme gradient boosting,XGBoost)和基于蚁群算法的自适应参数粒子群优化算法(particle swarm optimization algorithm of self-adaptive parameter based on ant colony algorithm,ASPSO)相结合的方法,... 该文提出了一种极限梯度提升(extreme gradient boosting,XGBoost)和基于蚁群算法的自适应参数粒子群优化算法(particle swarm optimization algorithm of self-adaptive parameter based on ant colony algorithm,ASPSO)相结合的方法,以实现电力系统暂态稳定预防控制。首先,通过XGBoost模型快速学习系统运行特征与暂态稳定性间的映射关系,给出特征重要性排序,提供一定的模型可解释性。其次,将训练好的XGBoost嵌入暂态稳定约束最优潮流模型作为暂态稳定约束。之后,利用ASPSO算法迭代求解,保证系统暂态稳定的同时,考虑发电机有功出力调整最小化,制定相应预防控制策略。最后,在PSS/E提供的IEEE 39节点系统中进行算例仿真,证明了所提方法的有效性。 展开更多
关键词 暂态稳定 预防控制 XGBoost aspso
在线阅读 下载PDF
基于Spark框架和ASPSO的并行划分聚类算法 被引量:11
2
作者 毛伊敏 甘德瑾 +1 位作者 廖列法 陈志刚 《通信学报》 EI CSCD 北大核心 2022年第3期148-163,共16页
针对划分聚类算法处理海量的数据存在的数据离散系数较大与抗干扰性差、局部簇簇数难以确定、局部簇质心随机性及局部簇并行化合并效率低等问题,提出了一种基于Spark框架和粒子群优化自适应策略(ASPSO)的并行划分聚类(PDC-SFASPSO)算法... 针对划分聚类算法处理海量的数据存在的数据离散系数较大与抗干扰性差、局部簇簇数难以确定、局部簇质心随机性及局部簇并行化合并效率低等问题,提出了一种基于Spark框架和粒子群优化自适应策略(ASPSO)的并行划分聚类(PDC-SFASPSO)算法。首先,提出了基于皮尔逊相关系数和方差的网格划分策略获取数据离散系数较小的网格单元并进行离群点过滤,解决了数据离散系数较大与抗干扰性差的问题;其次,提出了基于势函数与高斯函数的网格划分策略,获取局部聚类的簇数,解决了局部簇簇数难以确定的问题;再次,提出了ASPSO获取局部簇质心,解决了局部簇质心的随机性问题;最后,提出了基于簇半径与邻居节点的合并策略对相似度大的簇进行并行化合并,提高了局部簇并行化合并的效率。实验结果表明,PDC-SFASPSO算法在大数据环境下进行数据的划分聚类具有较好的性能表现,适用于对大规模的数据集进行并行化聚类。 展开更多
关键词 Spark框架 并行划分聚类 网格划分 粒子群优化自适应策略 并行化合并
在线阅读 下载PDF
基于改进隐马尔可夫模型的云网络安全研究 被引量:2
3
作者 郑友生 《信阳农林学院学报》 2021年第3期111-114,118,共5页
针对隐马尔可夫(HMM)模型参数选择存在很大的主观性问题,提出一种基于自适应聚群粒子群算法(ASPSO)优化HMM的云网络安全态势评估方法。首先通过人工鱼群提高PSO算法的全局搜索性能,同时改进PSO的惯性权值和学习因子进,以提高HMM参数寻... 针对隐马尔可夫(HMM)模型参数选择存在很大的主观性问题,提出一种基于自适应聚群粒子群算法(ASPSO)优化HMM的云网络安全态势评估方法。首先通过人工鱼群提高PSO算法的全局搜索性能,同时改进PSO的惯性权值和学习因子进,以提高HMM参数寻优准确率;然后以构建的最优HMM模型,构建云网络安全态势评估模型;最后模拟DDoS攻击场景,对上述评估模型进行验证。结果表明,改进算法在HMM参数寻优方面,只需迭代160次左右,而传统的PSO优化寻优要迭代430次。同时在真实模拟DDoS攻击场景时,与云网络实际受到攻击时大致相同,且在不同阶段表现出不同的态势值。由此看出,该改进模型可有效预测网络的安全。 展开更多
关键词 云网络 安全态势评估 HMM模型 aspso算法
在线阅读 下载PDF
基于自适应变异粒子群算法和BP神经网络的短期燃气负荷预测 被引量:13
4
作者 张少平 徐晓钟 代军委 《计算机应用》 CSCD 北大核心 2016年第A01期103-105,153,共4页
天燃气负荷具有非线性和不确定性的特性,针对传统的单一神经网络预测方法存在收敛速度慢、易陷入局部极值的问题,为提高预测精度,提出一种结合自适应变异粒子群算法(AMPSO)和BP神经网络的短期燃气负荷预测方法。采用自适应调整惯性权重... 天燃气负荷具有非线性和不确定性的特性,针对传统的单一神经网络预测方法存在收敛速度慢、易陷入局部极值的问题,为提高预测精度,提出一种结合自适应变异粒子群算法(AMPSO)和BP神经网络的短期燃气负荷预测方法。采用自适应调整惯性权重的方法,通过自适应的概率对比较密集的粒子引入交叉算子和变异算子,通过比较当前粒子的概率与交叉概率和变异概率的取值进行交叉和变异,形成AMPSO,利用AMPSO优化BP神经网络,建立较优的燃气负荷预测模型,这种方法能有效实现全局收敛并保证收敛速度。为验证模型的性能对上海市短期负荷进行预测,平均绝对百分误差MAPE为0.012。实验结果表明,与传统的BP神经网络预测方法和PSO_BP预测方法相比,该提出的模型的预测精度比较高。 展开更多
关键词 BP神经网络 粒子群算法 负荷预测 天然气 预测精度
在线阅读 下载PDF
基于改进HMM的云网络安全研究 被引量:1
5
作者 郭义 《粘接》 CAS 2021年第11期179-183,共5页
隐马尔可夫模型(HMM)是网络安全态势评估模型中应用最广泛的评估模型,其参数的确定直接影响了评估结果的客观性。针对这一问题,在粒子群算法(PSO)的基础上,提出自适应聚群粒子群算法(ASPSO)。首先通过人工鱼群在全局搜索方面的优势对PS... 隐马尔可夫模型(HMM)是网络安全态势评估模型中应用最广泛的评估模型,其参数的确定直接影响了评估结果的客观性。针对这一问题,在粒子群算法(PSO)的基础上,提出自适应聚群粒子群算法(ASPSO)。首先通过人工鱼群在全局搜索方面的优势对PSO进行改进,然后对PSO算法中的惯性权值和学习因子进行改进,以提高HMM参数寻优准确率。最后以DARPA2000数据集中的LLDoS1.0的DDoS攻击场景进行模拟攻击,结果表明,改进算法在迭代次数方面要明显优于传统的PSO-HMM算法,且可真实模拟DDoS攻击场景,与云网络实际受到攻击时一致。 展开更多
关键词 云网络 安全态势评估 HMM模型 aspso算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部