期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Modeling and characterization of contact behavior of asperities with irregular shapes
1
作者 Jiaxin Huang Chen Sun Jubing Chen 《Theoretical & Applied Mechanics Letters》 2025年第1期32-42,共11页
This paper introduces a model for characterizing the contact behavior of irregular asperities,transforming it into a superposition of sinusoidal asperity contact behaviors.A new sinusoidal asperity model is developed ... This paper introduces a model for characterizing the contact behavior of irregular asperities,transforming it into a superposition of sinusoidal asperity contact behaviors.A new sinusoidal asperity model is developed for bilin-ear hardening under plane strain conditions.Empirical equations are proposed,considering geometric shapes,tangent modulus,and Young’s modulus.The frequency of asperity height is extracted through Fourier transform for irregular asperities.Contact area and pressure are predicted using the sinusoidal asperity model,and the behavior of irregular asperities is obtained by superimposing those with the first three frequencies.Experimen-tal validation is conducted with milling and knurling-formed asperities,showing good alignment between the model and experimental results.In rough surface models,the proposed irregular asperity model exhibits greater accuracy in predicting contact behavior than a single sinusoidal asperity when interference exceeds 10%of the amplitude. 展开更多
关键词 Experimental characterization Finite element method Plastic deformation Asperity contact
在线阅读 下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
2
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 Concrete dam Buttress dam SLIDING Shear strength Concrete-rock interface Asperity inclination Asperity location
在线阅读 下载PDF
Study of hydro-mechanical behaviours of rough rock fracture with shear dilatancy and asperities using shear-flow model 被引量:1
3
作者 Luyu Wang Weizhong Chen Qun Sui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4004-4016,共13页
The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of roug... The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions. 展开更多
关键词 Rock fracture Stress-seepage coupling Shear-flow model Fracture asperity Shear dilatancy
在线阅读 下载PDF
Decadal Seismicity Prior to Great Earthquakes at Subduction Zones: Roles of Major Asperities and Low-Coupling Zones 被引量:3
4
作者 Lynn R. Sykes 《International Journal of Geosciences》 2021年第9期845-926,共82页
Decadal forerunning seismic activity of magnitude Mw ≥ 5.0 is mapped for all 45 mainshocks of Mw 7.7 to 9.1 at subduction zones of the world from 1993 to mid 2020. The zones of high slip in nearly all great earthquak... Decadal forerunning seismic activity of magnitude Mw ≥ 5.0 is mapped for all 45 mainshocks of Mw 7.7 to 9.1 at subduction zones of the world from 1993 to mid 2020. The zones of high slip in nearly all great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities and zones of strong seismic coupling. Much forerunning activity occurred at smaller asperities along the peripheries of the rupture zones of many great and giant mainshocks. Those sizes of great asperities as ascertained from forerunning activity generally agree with the areas of high seismic slip as determined by others from geodetic and tide-gauge data and finite-source seismic modeling. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of about 5 to 45 years are attributed to either the sizes and spacing of asperities (or lack of). This permits many great asperities to be mapped decades before they rupture in great and giant shocks. Several poorly coupled subduction zones such as Java, Lesser Sunda, Marianas, Tonga and Kermadec are characterized by few great thrust earthquakes and little, in any forerunning activity. Rupture zones of many great and giant earthquakes are bordered either along strike, updip, or downdip by zones of lower plate coupling. Several bordering regions were sites of forerunning activity, aftershocks, and slow-slip events. The detection of forerunning and precursory activities of various kinds should be sought on the peripheries of great asperities as well as within zones of high co-seismic slip. 展开更多
关键词 EARTHQUAKES SUBDUCTION Prediction Plate Coupling asperities
在线阅读 下载PDF
Decadal Seismicity before Great Earthquakes—Strike-Slip Faults and Plate Interiors: Major Asperities and Low-Coupling Zones 被引量:2
5
作者 Lynn R. Sykes 《International Journal of Geosciences》 2021年第9期784-833,共50页
Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes alon... Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones. 展开更多
关键词 EARTHQUAKES Strike-Slip Faults Transform Faults INTRAPLATE Prediction Plate Coupling asperities
在线阅读 下载PDF
Scratching by pad asperities in copper electrochemical-mechanical polishing
6
作者 边燕飞 翟文杰 +1 位作者 程媛媛 朱宝全 《Journal of Central South University》 SCIE EI CAS 2014年第11期4157-4162,共6页
Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical ... Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data. 展开更多
关键词 electrochemical-mechanical polishing scratch pad asperities nano-scratch model nano-indentation
在线阅读 下载PDF
NORMAL CONTACT STIFFNESS OF THE ELLIPTIC AREA BETWEEN TWO ASPERITIES 被引量:2
7
作者 Zhiqiang Liu Junping Shi +1 位作者 Fusheng Wang Zhufeng Yue 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第1期33-39,共7页
A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by ... A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by the FE method, the result compared with the theoretical solution. It is found that the curves of the normal contact stiffness versus the included angle in the principal curvature direction show similar trends and evolve as a cosine feature. The effects of the parameters on normal contact stiffness are found to show that normal contact stiffness increases and reaches the upper limit gradually with an increase in these parameters. 展开更多
关键词 contact stiffness joint surface elliptical area ASPERITY
原文传递
Instantaneous stress release in fault surface asperities during mining-induced fault-slip 被引量:2
8
作者 Atsushi Sainoki Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期619-628,共10页
Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studi... Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth. 展开更多
关键词 Shock unloading Mining-induced fault-slip Asperity Dynamic analysis
在线阅读 下载PDF
Study on the characteristics of rock failure strain and acoustic emission field for two parallelling faults with the same slip direction including asperities
9
作者 焦明若 张国民 +1 位作者 马胜利 马宏生 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第4期374-382,共9页
By dealing with strain and acoustic emission (AE) data for two parallelling faultss instability and failure with the same slip direction including asperities, the temporal-spatial evolution of strain and AE field dist... By dealing with strain and acoustic emission (AE) data for two parallelling faultss instability and failure with the same slip direction including asperities, the temporal-spatial evolution of strain and AE field distribution on the asperity of parallelling faults is analyzed. Furthermore the failure process of asperities and interaction among the asperities, i.e., positive and negative seismicity are discussed. Results show that instability and failure for the parallelling faults is a kind of negative seismicity. 展开更多
关键词 experiment ASPERITY INSTABILITY negative seismicity numerical simulation
在线阅读 下载PDF
Major Asperities that Ruptured in Large California Earthquakes, Surrounding Pre-Shocks, and Some Yearly to Decadal Precursory Changes in Seismic Activity
10
作者 Lynn R. Sykes 《International Journal of Geosciences》 2025年第1期99-125,共27页
Double-difference locations of forerunning shocks of seismic magnitude, M, 2 to 6 are examined in the months to decades before 11 mainshocks in California of magnitude 6 and larger. Each of the 11 had large quiet zone... Double-difference locations of forerunning shocks of seismic magnitude, M, 2 to 6 are examined in the months to decades before 11 mainshocks in California of magnitude 6 and larger. Each of the 11 had large quiet zones beforehand, which are called asperities, that break nearly entirely in large mainshocks. Their surrounding 11 zones were all sites of small to moderate-size shocks that define the approximate magnitudes of the coming large event. The latter, donuts of activity, are places to examine for precursory changes years to decades before larger earthquakes. The quiet asperities and many sites at the earth’s surface are not good places to monitor precursory changes before large mainshocks. Detecting forerunning events to large future earthquakes requires monitoring the right places. A few possible precursory changes are identified and discussed. 展开更多
关键词 Active Faults Plate Boundaries California Double-Difference Locations San Andreas Fault asperities Forecasts Predictions Seismology
在线阅读 下载PDF
New analytical model of elastic-plastic contact for three-dimensional rough surfaces considering interaction of asperities 被引量:4
11
作者 Yuqin WEN Jinyuan TANG +2 位作者 Wei ZHOU Lin LI Caichao ZHU 《Friction》 SCIE EI CAS CSCD 2022年第2期217-231,共15页
The contact calculation of three-dimensional real rough surfaces is the frontier field of tribology and surface science.In this study,we consider the interaction and elastic-plastic deformation characteristics of aspe... The contact calculation of three-dimensional real rough surfaces is the frontier field of tribology and surface science.In this study,we consider the interaction and elastic-plastic deformation characteristics of asperities and further,propose an analytical contact calculation method for rough surfaces considering the interaction of asperities.Based on the watershed algorithm,the rough surface is segmented and the asperities are reconstructed into ellipsoids.According to the height relationship between the asperities,the definition of the deformation reference height of the matrix between each couple of asperities is provided.Subsequently,the calculation formula of the substrate deformation is provided according to the local contact pressure considering the elastic-plastic deformation of the asperity,and the contact state under a specific load is determined using the iterative correction method.The results correspond with those of finite element numerical calculation and the study reveals the following:(1)compared with the results obtained without considering the asperity interaction,contact area,distance,and stiffness will be reduced by 6.6%,19.6%,and 49.5%,respectively,when the influence of asperity interaction is considered;(2)the interaction of the asperities has the greatest influence on the surface contact distance and stiffness.Under the same load,the existence of asperity interaction will reduce the contact distance,area,and stiffness;(3)considering the interaction of the asperities,the higher asperity will bear more load,but it will simultaneously reduce the contact of the surrounding area and increase that of the distant area.The calculation method proposed in this study has the advantages of high calculation efficiency and accuracy,thus,providing the calculation basis and method for subsequent studies on service performance of rough surfaces,such as the calculation of contact stiffness and fatigue performance analysis of rough surfaces. 展开更多
关键词 calculation method contact analysis interaction of asperities rough surface
原文传递
Contact behaviors of rough surfaces under tension and bending 被引量:1
12
作者 Xiaoyu Tang Wurui Ta Youhe Zhou 《Acta Mechanica Sinica》 2025年第2期132-147,共16页
The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the in... The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the interface performances of the engineering structures.In this paper,a contact model is established,which is suitable for tensile and bending deformed contact surfaces.Four contact forms of asperities are proposed,and their distribution characteristics are analyzed.This model reveals the mechanism of friction generation from the perspective of the force balance of asperity.The results show the contact behaviors of the deformed contact surface are significantly different from that of the plane contact,which is mainly reflected in the change in the number of contact asperities and the real contact area.This study suggests that the real contact area of the interface can be altered by applying tensile and bending strains,thereby regulating its contact mechanics and conductive behavior. 展开更多
关键词 Deformed contact surface Four contact forms of asperity Oblique contact Friction mechanism Contact resistance
原文传递
Rate-dependent shear behavior of rough joints based on acoustic emission
13
作者 Dongqi Shang Yujing Jiang +3 位作者 Sunhao Zhang Jinge Zhang Jie Liu Xiaoshan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6195-6212,共18页
Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)... Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)boundary conditions,with the shear failure process monitored using acoustic emission(AE)technology.As the shear rate increases,both the peak and ultimate shear stresses of rough joints exhibit a decrease,highlighting a pronounced rate-dependent behavior.Asperity degradation under different shear rates is effectively characterized by normalized AE counts,exhibiting a three-stage Sshaped trend:Stage I(quiescent),Stage II(growth),and Stage III(stable).The simultaneous occurrence of the lowest AE b-value and the highest AE amplitude closely aligns with the moment of peak shear stress.This synchronization suggests that AE events of significant energy are predominantly clustered around the peak shear stress,which critically influences the overall progression of failure.Three failure modes of asperities were categorized,including the biting-off failure mode(BFM),the climbing-sliding failure mode(CFM),and the hybrid biting-off and climbing-sliding failure mode(HFM).Analysis of the multifractal spectra reveals that both the multifractal spectrum width(Δα)and the fractal dimension variability(Δf)diminish as the shear rate increases,suggesting that the complexity of the failure modes is inversely related to the shear rate.With increasing shear rates,the dominant failure mode evolves from BFM to CFM.The research findings facilitate a comprehensive understanding of the ratedependent shear behavior of rough joints,providing valuable guidance for rational support in underground engineering. 展开更多
关键词 Rough joints Shear rate Acoustic emission(AE) Asperity degradation AE b-value Multifractal spectrum
在线阅读 下载PDF
Grid-growth method for the reconstruction of 3D rock joints with arbitrary joint roughness and persistence
14
作者 Hanyu CHEN Peng GUO +1 位作者 Guangyao LI Lifeng FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期393-406,共14页
We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the posit... We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the positions of the grids,the joint morphology can be modified to construct models with desired joint roughness and persistence.Accordingly,numerous joint models with different joint roughness and persistence were built.The effects of relevant parameters(such as the number,height,slope of asperities,and the number,area of rock bridges)on the joint roughness coefficient(JRC)and joint persistence were investigated.Finally,an artificially split joint was reconstructed using the method,and the method's accuracy was evaluated by comparing the JRC of the models with that of the artificially split joint.The results showed that the proposed method can effectively control the JRC of joint models by adjusting the number,height,and slope of asperities.The method can also modify the joint persistence of joint models by adjusting the number and area of rock bridges.Additionally,the JRC of models obtained by our method agrees with that of the artificially split surface.Overall,the method demonstrated high accuracy for 3D rock joint reconstruction. 展开更多
关键词 3D rock joint reconstruction Joint roughness Joint persistence ASPERITY Rock bridge
原文传递
Landslide monitoring and mechanism analysis based on asperity theory:a case study of Rongwu Expressway,Inner Mongolia
15
作者 XING Yuanhao LI Chi +3 位作者 ZHANG Baolong CAO Wenhai LI Shuanhu GAO Yu 《Journal of Mountain Science》 2025年第9期3433-3448,共16页
Varied slope structures have different landslide initiation mechanisms.However,the role of interfacial asperities in controlling sliding initiation is unclear.This study develops a novel analytical method for interfac... Varied slope structures have different landslide initiation mechanisms.However,the role of interfacial asperities in controlling sliding initiation is unclear.This study develops a novel analytical method for interface mechanisms in practical landslide scenarios.Based on asperity theory,theoretical derivations were conducted,yielding an equilibrium equation grounded in the maximum shear length of asperities(Llimit).A method was proposed to evaluate slope stability by integrating Llimit with monitored displacement data.On-site displacement monitoring and slope state analysis determined the distribution range of asperities,providing theoretical support for slope remediation.Between July 2023 and July 2024,a large landslide located in Shagudu Town,Zhungeer Banner,Ordos,Inner Mongolia,underwent multiple deformation stages.This landslide seriously affected the operations of the Rongwu Expressway.This study initially examined the geological structure of the landslide through geological drilling and surveys.The distribution of asperities in the landslide area was determined through physical and mechanical tests and on-site geological mapping.A layout plan for landslide disposal and monitoring points was developed based on the interface landslide asperity theory.Analysis of 20 days of displacement monitoring data was used to determine asperity distribution and analyze slope movement,informed by asperity theory.This study pioneers the systematic application of asperity theory as the primary framework for analyzing and managing a large-scale interface landslide in engineering practice.Its rationality and effectiveness are rigorously demonstrated through the successful determination of the asperity distribution range within the Rongwu Expressway landslide,leading to effective remediation and favorable monitoring outcomes.This work not only validates the asperity theory for interface landslides but,crucially,establishes a novel,practical method for their stability assessment.Furthermore,a key theoretical advancement is the development of the concept that asperity-controlled main sliding surfaces can induce secondary sliding surfaces,based on field evidence and analysis. 展开更多
关键词 Interfacial landslide Asperity theory Monitoring method Theoretical innovation
原文传递
Elastohydrodynamic Lubrication Interface Stiffness and Damping Considering Asperity Lateral Contact
16
作者 Zhiqiang Gao Yu Zhang +4 位作者 Xian Wei Yanfang Zhu Lixia Peng Weiping Fu Wen Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期109-123,共15页
Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most ca... Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most cases,the contact between asperities within an interface takes the form of lateral contact rather than peak contact.Regions devoid of contact asperities are filled with lubricating oil.However,conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth,rigid plane.These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance.To address this issue,we have developed a novel EHL interface model comprising two rough surfaces.This model allows us to explore the influence of asperity height,contact angle,and contact azimuth angle on EHL interface performance. 展开更多
关键词 EHL interface Asperity lateral contact Contact stiffness DAMPING
原文传递
Forecasting the Epicenter Area of a Future Strong Earthquake
17
作者 Giulio Riga Paolo Balocchi 《Open Journal of Earthquake Research》 2024年第3期133-149,共17页
It is clear from the literature data that the geometric characteristics of the seismogenic source are directly related to the nucleation of their strong earthquakes. Our study starts from the observation of the proxim... It is clear from the literature data that the geometric characteristics of the seismogenic source are directly related to the nucleation of their strong earthquakes. Our study starts from the observation of the proximity relationship between the epicenter of a strong earthquake and the surface trace of the seismogenic source. The proposed model is based on the mathematical analysis of seismicity falling within an area, through a polynomial function to determine a curve. The experimental results of our model confirm that 97% of the epicenters of strong earthquakes are located near the concavities or at the inflection points of the polynomial curve. Only 3% of strong earthquakes are located at the edges of the analyzed areas, where the number of data is not significant. The proposed model makes it possible to locate, with good approximation, the areas most likely to be the site of future strong earthquakes. 展开更多
关键词 Epicenter Mainshock SEQUENCE ASPERITY
在线阅读 下载PDF
镉胁迫对续断菊Sonchus asper L.Hill.根系分泌物的影响 被引量:15
18
作者 秦丽 李元 +3 位作者 祖艳群 何永美 王吉秀 陈建军 《生态环境学报》 CSCD 北大核心 2012年第3期540-544,共5页
通过盆栽试验,研究了不同Cd质量分数(0、50、100、200 mg.kg-1)对续断菊Sonchus asper L.Hill.根系分泌总有机酸、游离氨基酸、可溶性糖的影响,旨在探明根系分泌物对续断菊超积累Cd的影响。结果表明:Cd胁迫下续断菊根系分泌总有机酸、... 通过盆栽试验,研究了不同Cd质量分数(0、50、100、200 mg.kg-1)对续断菊Sonchus asper L.Hill.根系分泌总有机酸、游离氨基酸、可溶性糖的影响,旨在探明根系分泌物对续断菊超积累Cd的影响。结果表明:Cd胁迫下续断菊根系分泌总有机酸、游离氨基酸和可溶性糖的质量浓度显著增加,同时,总有机酸、可溶性糖和游离氨基酸又促进了植株对Cd的吸收。随着Cd处理质量分数的增加,续断菊地上部和根部镉质量分数显著增加,90 d时续断菊地上部镉质量分数与可溶性糖、游离氨基酸的质量浓度呈极显著正相关,相关系数分别为0.999(P<0.01)和0.995(P<0.01),根部镉质量分数与可溶性糖、游离氨基酸的质量浓度也呈显著正相关,相关系数分别为0.998(P<0.01)和0.987(P<0.05);Cd对续断菊根系可溶性糖的分泌、游离氨基酸的合成有刺激作用,根系分泌的可溶性糖和游离氨基酸可能在续断菊累积镉的过程中有重要作用。 展开更多
关键词 CD 续断菊Sonchus asper L.Hill. 根系分泌物 可溶性糖 游离氨基酸
在线阅读 下载PDF
经验格林函数方法模拟强地面运动的研究进展 被引量:7
19
作者 李宗超 陈学良 +3 位作者 高孟潭 王建龙 鄢兆伦 李铁飞 《世界地震工程》 CSCD 北大核心 2016年第2期209-216,共8页
经验格林函数方法(简称EGFM)是当前模拟强地面运动的一种主流方法。主要介绍EGFM方法的发展历程和特点,重点解释了EGFM核心理论的沿革;详细介绍了加入凹凸体模型的改进的经验格林函数方法,并指出一种划分凹凸体区域新方法的可能性。
关键词 经验格林函数方法 震源模型 Asperity模型 不确定性
在线阅读 下载PDF
Elastoplastic Contact Mechanics Model of Rough Surface Based on Fractal Theory 被引量:10
20
作者 YUAN Yuan GAN Li +1 位作者 LIU Kai YANG Xiaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期207-215,共9页
Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a sin... Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces. 展开更多
关键词 rough surfaces asperities fractal theory contact model
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部