A space-borne hard X-ray collimator,comprising 91 pairs of grids,has been developed for the Hard X-ray Imager(HXI).The HXI is one of the three scientific instruments onboard the first Chinese solar mission:the Advance...A space-borne hard X-ray collimator,comprising 91 pairs of grids,has been developed for the Hard X-ray Imager(HXI).The HXI is one of the three scientific instruments onboard the first Chinese solar mission:the Advanced Space-based Solar Observatory(ASO-S).The HXI collimator(HXI-C)is a spatial modulation X-ray telescope designed to observe hard X-rays emitted by energetic electrons in solar flares.This paper presents the detailed design of the HXI-C for the qualification model that will be inherited by the flight model.Series tests on the HXI-C qualification model are reported to verify the ability of the HXI-C to survive the launch and to operate normally in on-orbit environments.Furthermore,results of the X-ray beam test for the HXI-C are presented to indirectly identify the working performance of the HXI-C.展开更多
A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager(HXI). The HXI is one of the three payloads onbo...A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager(HXI). The HXI is one of the three payloads onboard the advanced space-based solar observatory(ASO-S), which is scheduled to be launched in early 2022 as the first Chinese solar satellite. LaBr3 scintillators and photomultiplier tubes with a super bialkali cathode are used to achieve an energy resolution better than 20% at 30 keV.Further, a new multi-channel charge-sensitive readout application-specific integrated circuit guarantees high-frequency data acquisition with low power consumption. This paper presents a detailed design of the spectrometer for the engineering model of the HXI and discusses its noise and linearity performance.展开更多
先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)卫星是我国首颗太阳观测卫星,主要观测太阳耀斑和日冕物质抛射以及产生它们的磁场结构.ASO-S卫星的科学应用系统是科学卫星工程的6大系统之一,它连接科学用户和卫星数...先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)卫星是我国首颗太阳观测卫星,主要观测太阳耀斑和日冕物质抛射以及产生它们的磁场结构.ASO-S卫星的科学应用系统是科学卫星工程的6大系统之一,它连接科学用户和卫星数据,为将卫星的科学数据转化为科学成果提供保障.科学应用系统的数据库是连接软件与海量数据的枢纽,为科学数据生产和用户服务及运行提供数据层的支撑.介绍了科学应用系统的数据库架构设计、数据库的选择以及数据库性能优化和表样例.这里的数据库包括观测计划、工程参数、运维日志、科学数据、定标数据和特征事件识别等数据库.这些数据库的建设将为ASO-S卫星工程科学应用系统的顺利运行提供数据支撑,也可以为未来其他科学卫星类似数据库的搭建提供参考和借鉴.展开更多
基金supported by the Strategic Priority Research Program on Space Science,Chinese Academy of Sciences(No.XDA 15320104)the National Natural Science Foundation of China(Grant Nos.11803093,11973097 and 12022302)the Scientific Instrument Developing Project of the CAS(No.20200077)。
文摘A space-borne hard X-ray collimator,comprising 91 pairs of grids,has been developed for the Hard X-ray Imager(HXI).The HXI is one of the three scientific instruments onboard the first Chinese solar mission:the Advanced Space-based Solar Observatory(ASO-S).The HXI collimator(HXI-C)is a spatial modulation X-ray telescope designed to observe hard X-rays emitted by energetic electrons in solar flares.This paper presents the detailed design of the HXI-C for the qualification model that will be inherited by the flight model.Series tests on the HXI-C qualification model are reported to verify the ability of the HXI-C to survive the launch and to operate normally in on-orbit environments.Furthermore,results of the X-ray beam test for the HXI-C are presented to indirectly identify the working performance of the HXI-C.
基金supported by the Strategic Priority Program Stage Ⅱ on Space Science of Chinese Academy of Sciences(No.XDA15320104)the National Natural Science Foundation of China(Nos.11703097,11427803,11820101002,11622327,11773087,U1631116,and 11803093)
文摘A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager(HXI). The HXI is one of the three payloads onboard the advanced space-based solar observatory(ASO-S), which is scheduled to be launched in early 2022 as the first Chinese solar satellite. LaBr3 scintillators and photomultiplier tubes with a super bialkali cathode are used to achieve an energy resolution better than 20% at 30 keV.Further, a new multi-channel charge-sensitive readout application-specific integrated circuit guarantees high-frequency data acquisition with low power consumption. This paper presents a detailed design of the spectrometer for the engineering model of the HXI and discusses its noise and linearity performance.
文摘先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)卫星是我国首颗太阳观测卫星,主要观测太阳耀斑和日冕物质抛射以及产生它们的磁场结构.ASO-S卫星的科学应用系统是科学卫星工程的6大系统之一,它连接科学用户和卫星数据,为将卫星的科学数据转化为科学成果提供保障.科学应用系统的数据库是连接软件与海量数据的枢纽,为科学数据生产和用户服务及运行提供数据层的支撑.介绍了科学应用系统的数据库架构设计、数据库的选择以及数据库性能优化和表样例.这里的数据库包括观测计划、工程参数、运维日志、科学数据、定标数据和特征事件识别等数据库.这些数据库的建设将为ASO-S卫星工程科学应用系统的顺利运行提供数据支撑,也可以为未来其他科学卫星类似数据库的搭建提供参考和借鉴.