With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering th...With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.展开更多
GaN高电子迁移率晶体管(HEMT)器件受制于陷阱效应,建立准确的非线性模型非常困难。介绍了表面势物理基高电子迁移率高级电路模型(ASM-HEMT),分析了标准ASM-HEMT模型在表征陷阱效应方面的不足,进而建立了新的陷阱模型电路拓扑及模型方程...GaN高电子迁移率晶体管(HEMT)器件受制于陷阱效应,建立准确的非线性模型非常困难。介绍了表面势物理基高电子迁移率高级电路模型(ASM-HEMT),分析了标准ASM-HEMT模型在表征陷阱效应方面的不足,进而建立了新的陷阱模型电路拓扑及模型方程,新陷阱模型可以更好地表征器件陷阱俘获和释放电子的不对称性。基于0.25μm GaN HEMT器件,进行了脉冲I-V、多偏置S参数、负载牵引仿真及测试,并对新模型进行参数提取和建模。经过对比仿真和测试结果发现,新模型的仿真结果与实测结果比标准ASM-HEMT模型更加吻合,说明新模型表征陷阱效应更加准确,提升了模型的准确性,进而提高GaN HEMT功率放大器设计仿真的准确性。展开更多
基金Supported by the National Key R&D Program of China(2022YFF0707800,2022YFF0707801)Primary Research&Development Plan of Jiangsu Province(BE2022070,BE2022070-2)。
文摘With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.
文摘GaN高电子迁移率晶体管(HEMT)器件受制于陷阱效应,建立准确的非线性模型非常困难。介绍了表面势物理基高电子迁移率高级电路模型(ASM-HEMT),分析了标准ASM-HEMT模型在表征陷阱效应方面的不足,进而建立了新的陷阱模型电路拓扑及模型方程,新陷阱模型可以更好地表征器件陷阱俘获和释放电子的不对称性。基于0.25μm GaN HEMT器件,进行了脉冲I-V、多偏置S参数、负载牵引仿真及测试,并对新模型进行参数提取和建模。经过对比仿真和测试结果发现,新模型的仿真结果与实测结果比标准ASM-HEMT模型更加吻合,说明新模型表征陷阱效应更加准确,提升了模型的准确性,进而提高GaN HEMT功率放大器设计仿真的准确性。