期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
LOCAL ONE-DIMENSIONAL ASE-I SCHEME FOR 2D DIFFUSION EQUATION
1
作者 LIU XIAO-YU and ZHANG BAO-LIN(Department of Applied Mathemattes, Tsinghua Unive rsiap Beijing, China Laboratory Of Commutational Physics, IAPCM P.O. Box 8009, Beliing, China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期515-521,共7页
A local alternating segment explicit - implicit method for the solution of 2D diffusion equations is presented in this paper .The method is unconditionally stable and has the obvious property of parallelism. Some nume... A local alternating segment explicit - implicit method for the solution of 2D diffusion equations is presented in this paper .The method is unconditionally stable and has the obvious property of parallelism. Some numerical experiments show the method is not only simple but also more accurate. 展开更多
关键词 ASE LOCAL ONE-DIMENSIONAL ase-i SCHEME FOR 2D DIFFUSION EQUATION
在线阅读 下载PDF
时间分数阶反应-扩散方程混合差分格式的并行计算方法 被引量:1
2
作者 党旭 杨晓忠 《高校应用数学学报(A辑)》 北大核心 2019年第3期325-338,共14页
分数阶反应-扩散方程有深刻的物理和工程背景,其数值方法的研究具有重要的科学意义和应用价值.文中提出时间分数阶反应-扩散方程混合差分格式的并行计算方法,构造了一类交替分段显-隐格式(alternative segment explicit-implicit,ASE-I... 分数阶反应-扩散方程有深刻的物理和工程背景,其数值方法的研究具有重要的科学意义和应用价值.文中提出时间分数阶反应-扩散方程混合差分格式的并行计算方法,构造了一类交替分段显-隐格式(alternative segment explicit-implicit,ASE-I)和交替分段隐-显格式(alternative segment implicit-explicit,ASI-E),这类并行差分格式是基于Saul’yev非对称格式与古典显式差分格式和古典隐式差分格式的有效组合.理论分析格式解的存在唯一性,无条件稳定性和收敛性.数值试验验证了理论分析,表明ASE-I格式和ASI-E格式具有理想的计算精度和明显的并行计算性质,证实了这类并行差分方法求解时间分数阶反应-扩散方程是有效的. 展开更多
关键词 时间分数阶反应-扩散方程 ase-i格式 ASI-E格式 无条件稳定性 收敛阶
在线阅读 下载PDF
Alternating Segment Explicit-Implicit and Implicit-Explicit Parallel Difference Method for Time Fractional Sub-Diffusion Equation
3
作者 Lifei Wu Yadi Zhao Xiaozhong Yang 《Journal of Applied Mathematics and Physics》 2018年第5期1017-1033,共17页
The fractional diffusion equations can accurately describe the migration process of anomalous diffusion, which are widely applied in the field of natural science and engineering calculations. This paper proposed a kin... The fractional diffusion equations can accurately describe the migration process of anomalous diffusion, which are widely applied in the field of natural science and engineering calculations. This paper proposed a kind of numerical methods with parallel nature which were the alternating segment explicit-implicit (ASE-I) and implicit-explicit (ASI-E) difference method for the time fractional sub-diffusion equation. It is based on the combination of the explicit scheme, implicit scheme, improved Saul’yev asymmetric scheme and the alternating segment technique. Theoretical analyses have shown that the solution of ASE-I (ASI-E) scheme is uniquely solvable. At the same time the stability and convergence of the two schemes were proved by the mathematical induction. The theoretical analyses are verified by numerical experiments. Meanwhile the ASE-I (ASI-E) scheme has the higher computational efficiency compared with the implicit scheme. Therefore it is feasible to use the parallel difference schemes for solving the time fractional diffusion equation. 展开更多
关键词 Time Fractional Diffusion Equation ase-i ASI-E Stability PARALLEL Computing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部