A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 ...A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 rpm, short-duty, sinusoidal drive, low cogging, high efficiency at peak torque, and etc. for an ARWM (aerospace retraction wheel motor). In construction, the PMs (permanent magnets) fixed on the rotor core which is surface-mOunted magnets retained by a carbon-fiber bandage. Redundant windings, resistant to fault propagation have accounted. Besides, an axial water-jacket housing without end-cap cooling has involved. All performed characteristic performances of the correlated ARWM will verify by comparison through 2-D and 3-D FEA results. In this paper, design process has dealing with determination of various kinds of losses such as electromagnetic and mechanical losses. In terms of both classified losses, copper, stator back iron, stator tooth, PM, rotor back iron, air-friction and sleeve losses were calculated. The 3-D end-winding effects were included in the modeled ARWM by the authors.展开更多
A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rp...A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.展开更多
文摘A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 rpm, short-duty, sinusoidal drive, low cogging, high efficiency at peak torque, and etc. for an ARWM (aerospace retraction wheel motor). In construction, the PMs (permanent magnets) fixed on the rotor core which is surface-mOunted magnets retained by a carbon-fiber bandage. Redundant windings, resistant to fault propagation have accounted. Besides, an axial water-jacket housing without end-cap cooling has involved. All performed characteristic performances of the correlated ARWM will verify by comparison through 2-D and 3-D FEA results. In this paper, design process has dealing with determination of various kinds of losses such as electromagnetic and mechanical losses. In terms of both classified losses, copper, stator back iron, stator tooth, PM, rotor back iron, air-friction and sleeve losses were calculated. The 3-D end-winding effects were included in the modeled ARWM by the authors.
文摘A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.