In this paper,I have introduced the concept of the Evolutionary Species,and shown how it affects the taxonomy of the Artiodactyla of China.The"traditional"taxonomy of the Artiodactyla,which has remained almo...In this paper,I have introduced the concept of the Evolutionary Species,and shown how it affects the taxonomy of the Artiodactyla of China.The"traditional"taxonomy of the Artiodactyla,which has remained almost unchanged for 100 years,relies on ill-formulated notions of species and subspecies,only slightly modified by the population-thinking of the 1930s.Species are populations(or metapopu-lations)differentiated by the possession of fixed heritable differences from other such populations(or metapopulations).In the Artiodactyla,there are many more species than"traditionally"recognised;this is by no means a drawback,as it enables the units of biodiversity to be identified in a testable fashion,and brings the taxonomy of large mammals into line with that long practised for small mammals.Species are likely to differentiate where there are natural gaps in the distribution of a genus,such as mountain blocks(for example in the genus Budorcas)or otherwise dissected habitat(for example in the genus Cervus).Natural hybridisation between distinct species is not an uncommon phenomenon,again illustrated well in the genus Cervus,where hybridisation between the elaphus and nippon groups occurs today and evidently occurred in the past,as shown by the distribution of mtDNA.展开更多
偶蹄目(Artiodactyla)动物是人类驯化物种的主要来源(如反刍动物),是研究自然选择和人工选择下染色体进化的重要模型生物。在已发表的72个染色体水平的偶蹄目动物基因组中,通过构建全基因组基因共线性的方法,建立了物种之间的直系同源...偶蹄目(Artiodactyla)动物是人类驯化物种的主要来源(如反刍动物),是研究自然选择和人工选择下染色体进化的重要模型生物。在已发表的72个染色体水平的偶蹄目动物基因组中,通过构建全基因组基因共线性的方法,建立了物种之间的直系同源基因集,并由此构建了偶蹄目物种的完整系统发育树,它与已有结果的相似性为86%。同时,通过建立基因共线性的方法,确定了7个反刍动物代表物种的染色体共线性。结合TRF(Tandem repeats finder)软件预测数据和着丝粒蛋白A抗体CUT&Tag(Cleavage under targets and tagmentation)数据定位了反刍动物代表物种--梅花鹿(Cervus nippon)、水牛(Bubalus bubalis)和黄牛(Bos taurus)的染色体着丝粒区域。结果显示,大部分染色体重排-染色体融合或断裂发生在着丝粒区域,它们的着丝粒结构具有共同的起源。同时发现在一些染色体的重排过程中,会在染色体的融合处进化出新的功能性着丝粒区域,而在染色体重排前的对应着丝粒位置仍然存在祖先着丝粒序列的痕迹。从鉴定到的染色体着丝粒区域的特征性串联重复序列结构来看,这些重复序列具有较高的鸟嘌呤和胞嘧啶(GC)含量,暗示着丝粒区域的功能活化和沉默受到了表观遗传学的调控。本研究初步揭示了物种间染色体重排的分子机制,推测由染色体重排带来的染色体多样性是驱动反刍动物物种多样性形成的重要动力。展开更多
文摘In this paper,I have introduced the concept of the Evolutionary Species,and shown how it affects the taxonomy of the Artiodactyla of China.The"traditional"taxonomy of the Artiodactyla,which has remained almost unchanged for 100 years,relies on ill-formulated notions of species and subspecies,only slightly modified by the population-thinking of the 1930s.Species are populations(or metapopu-lations)differentiated by the possession of fixed heritable differences from other such populations(or metapopulations).In the Artiodactyla,there are many more species than"traditionally"recognised;this is by no means a drawback,as it enables the units of biodiversity to be identified in a testable fashion,and brings the taxonomy of large mammals into line with that long practised for small mammals.Species are likely to differentiate where there are natural gaps in the distribution of a genus,such as mountain blocks(for example in the genus Budorcas)or otherwise dissected habitat(for example in the genus Cervus).Natural hybridisation between distinct species is not an uncommon phenomenon,again illustrated well in the genus Cervus,where hybridisation between the elaphus and nippon groups occurs today and evidently occurred in the past,as shown by the distribution of mtDNA.
文摘偶蹄目(Artiodactyla)动物是人类驯化物种的主要来源(如反刍动物),是研究自然选择和人工选择下染色体进化的重要模型生物。在已发表的72个染色体水平的偶蹄目动物基因组中,通过构建全基因组基因共线性的方法,建立了物种之间的直系同源基因集,并由此构建了偶蹄目物种的完整系统发育树,它与已有结果的相似性为86%。同时,通过建立基因共线性的方法,确定了7个反刍动物代表物种的染色体共线性。结合TRF(Tandem repeats finder)软件预测数据和着丝粒蛋白A抗体CUT&Tag(Cleavage under targets and tagmentation)数据定位了反刍动物代表物种--梅花鹿(Cervus nippon)、水牛(Bubalus bubalis)和黄牛(Bos taurus)的染色体着丝粒区域。结果显示,大部分染色体重排-染色体融合或断裂发生在着丝粒区域,它们的着丝粒结构具有共同的起源。同时发现在一些染色体的重排过程中,会在染色体的融合处进化出新的功能性着丝粒区域,而在染色体重排前的对应着丝粒位置仍然存在祖先着丝粒序列的痕迹。从鉴定到的染色体着丝粒区域的特征性串联重复序列结构来看,这些重复序列具有较高的鸟嘌呤和胞嘧啶(GC)含量,暗示着丝粒区域的功能活化和沉默受到了表观遗传学的调控。本研究初步揭示了物种间染色体重排的分子机制,推测由染色体重排带来的染色体多样性是驱动反刍动物物种多样性形成的重要动力。