期刊文献+
共找到1,996篇文章
< 1 2 100 >
每页显示 20 50 100
基于ART-2人工神经网络算法的煤矿应急管理能力综合评价模型研究
1
作者 张玉华 丁立培 王宇 《中国矿业》 北大核心 2025年第8期145-151,共7页
在评价煤矿应急管理能力时,为指标分配权重的过程易产生数据缺失值,导致指标计算精度较差,影响了评价结果的准确性。为此,构建基于ART-2人工神经网络算法的煤矿应急管理能力综合评价模型,以提升评价的客观性与准确性。首先,依据煤矿应... 在评价煤矿应急管理能力时,为指标分配权重的过程易产生数据缺失值,导致指标计算精度较差,影响了评价结果的准确性。为此,构建基于ART-2人工神经网络算法的煤矿应急管理能力综合评价模型,以提升评价的客观性与准确性。首先,依据煤矿应急管理体系结构,对打分数值进行规范化处理,将其转化为类别样本矢量集,为后续利用ART-2人工神经网络算法进行指标筛选提供标准化的数据输入。其次,运用ART-2人工神经网络算法对煤矿管理能力指标进行筛选。再次,组合网络层级中的元素,构建评价指标间相互影响的未加权矩阵。该矩阵全面反映了各评价指标之间的关联关系,为后续的权重分配提供依据。在目标层神经元节点处设置警戒数值,通过ART-2人工神经网络对未加权矩阵进行训练和优化。在此过程中,算法能够自动调整和修正指标权重,降低权重分配的主观性和模糊性。最后,根据修正后的权值,重新对各层神经元节点处的指标评分进行计算,得出最终的评价结果。研究结论表明,基于ART-2人工神经网络算法的煤矿应急管理能力评价模型,在解决传统评价方法中权重分配主观性强、数据易缺失等问题上具有显著优势,能够为煤矿应急管理决策提供更科学、合理的依据,有助于煤矿企业更好地评估和提升应急管理能力,从而保障煤矿的安全生产。 展开更多
关键词 art-2人工神经网络 煤矿应急管理能力 类别样本矢量集 网络层级 警戒数值
在线阅读 下载PDF
Generation of SARS-CoV-2 dual-target candidate inhibitors through 3D equivariant conditional generative neural networks 被引量:1
2
作者 Zhong-Xing Zhou Hong-Xing Zhang Qingchuan Zheng 《Journal of Pharmaceutical Analysis》 2025年第6期1291-1310,共20页
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ... Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors. 展开更多
关键词 SARS-CoV-2 Dual-target drug 3D generative neural networks Drug design
暂未订购
Effects of Oral Vitamin D Supplementation on Vitamin D Levels and Glycemic Parameters in Patients with Type 2 Diabetes Mellitus:A Systematic Review and Network Meta-Analysis
3
作者 Xiujuan Zhang Hongfei Wang +1 位作者 Xia Gao Yang Zhao 《Biomedical and Environmental Sciences》 2025年第6期716-726,共11页
Objective Epidemiological studies have shown that vitamin D status affects glycemic control in individuals with type 2 diabetes mellitus(T2DM).However,findings from intervention studies remain inconsistent.Therefore,a... Objective Epidemiological studies have shown that vitamin D status affects glycemic control in individuals with type 2 diabetes mellitus(T2DM).However,findings from intervention studies remain inconsistent.Therefore,a network meta-analysis was conducted to evaluate the comparative efficacy of various vitamin D supplementation strategies on glucose indicators in adults with T2DM.Methods Eligible studies published before September 12,2024,were retrieved from PubMed,EMBASE,Cochrane Library,and Web of Science.A network meta-analysis of multiple dosage strategies—low(<1,000 IU/day,LDS),medium(1,000–2,000 IU/day,MDS),high(2,000–4,000 IU/day,HDS),and extremely high(≥4,000 IU/day,EHDS)—was performed.Results The network meta-analysis of 40 RCTs indicated that,compared with placebo,vitamin D_(3)supplementation increased 25-hydroxyvitamin D[25-(OH)-D]levels,with pooled mean difference(MD)showing a stepwise increase from LDS to EHDS.Ranking probabilities showed a corresponding rise in 25-(OH)-D levels from LDS(46.7%)to EHDS(91.2%).EHDS reduced fasting blood glucose(FBG)relative to no treatment.LDS significantly decreased hemoglobin A1c(HbA1c),and vitamin D_(2) significantly affected FBG levels.MDS led to a significant change in fasting insulin(FIN)compared to both placebo(MD:-4.76;95%CI-8.91 to-0.61)and no treatment(MD:-7.30;95%CI-14.44 to-0.17).Conclusion The findings suggest that vitamin D supplementation may be a viable approach for improving glycemic control in adults with T2DM,with lower doses potentially offering benefit.The analysis also showed a dose-dependent increase in 25-(OH)-D levels. 展开更多
关键词 network meta-analysis Vitamin D supplementation Type 2 diabetes mellitus Glycemic biomarkers
暂未订购
Association between antidiabetic drugs and cancer risk in patients with type 2 diabetes mellitus: A systematic review and network metaanalysis
4
作者 Xue-Dong An Li-Yun Duan +3 位作者 Yue-Hong Zhang Qian-You Jia Yan-Min Zhang Yun Qiao 《World Journal of Diabetes》 2025年第10期370-384,共15页
BACKGROUND Current evidence suggests that commonly used antidiabetic drugs have varying effects on cancer risk.Some antidiabetics offer protective effects against cancer,whereas others may increase risk in specific po... BACKGROUND Current evidence suggests that commonly used antidiabetic drugs have varying effects on cancer risk.Some antidiabetics offer protective effects against cancer,whereas others may increase risk in specific populations.AIM To comprehensively compare the effects of different antidiabetic drugs on the risk of various cancers in patients with type 2 diabetes mellitus(T2DM)through a systematic review and network meta-analysis.METHODS Four databases(PubMed,EMBASE,Cochrane Library,and Web of Science)were searched from their inception until April 11,2025.Published randomized controlled trials that enrolled at least 100 participants and had an intervention duration of at least 1 year were included.The inclusion criteria were studies involving adult patients with T2DM and interventions that compared different classes of antidiabetic drugs with a placebo or another antidiabetic drug.Network meta-analysis was conducted using Stata 17.0 software.Confidence in network meta-analysis was used to assess the quality of evidence regarding the risk of cancer associated with different antidiabetic drugs.RESULTS A total of 13535 articles were identified.After applying the inclusion and exclusion criteria,87 high-quality studies involving 216106 patients and 26 different drugs across seven classes were included in this study.Indirect evidence from network meta-analysis revealed some heterogeneity;however,this did not affect the reliability of the results.The results indicated that antidiabetic drugs did not increase the overall risk of cancer compared with placebo.In contrast,some antidiabetic medications demonstrated a more pronounced advantage in reducing cancer risk,such as dipeptidyl peptidase-4 inhibitors for thyroid and rectal cancers;sodium-glucose co-transporter type 2 inhibitors for lung and bronchial cancers;sulfonylureas for gastric and colon cancers;biguanides for pancreatic cancer;insulin for bladder cancer;glucagon-like peptide-1 receptor agonists for prostate,uterine,hepatocellular,renal,and hematologic cancers;and thiazolidinediones for breast cancer.CONCLUSION Antidiabetic drugs reduce cancer risk in patients with T2DM.However,given the limitations in the number and quality of the included studies,our conclusions should be interpreted with caution.More large-scale,high-quality clinical trials are required to validate our findings towards the optimization of comprehensive cancer management strategies for patients with T2DM. 展开更多
关键词 Antidiabetic drugs Type 2 diabetes mellitus Cancer risk Systematic review network meta-analysis
暂未订购
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
5
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep Q-network graph neural network
在线阅读 下载PDF
Cross-feature fusion speech emotion recognition based on attention mask residual network and Wav2vec 2.0
6
作者 Xiaoke Li Zufan Zhang 《Digital Communications and Networks》 2025年第5期1567-1577,共11页
Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the dev... Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the development of SER system.To address these issues,this paper proposes a framework that incorporates the Attentive Mask Residual Network(AM-ResNet)and the self-supervised learning model Wav2vec 2.0 to obtain AM-ResNet features and Wav2vec 2.0 features respectively,together with a cross-attention module to interact and fuse these two features.The AM-ResNet branch mainly consists of maximum amplitude difference detection,mask residual block,and an attention mechanism.Among them,the maximum amplitude difference detection and the mask residual block act on the pre-processing and the network,respectively,to reduce the impact of silent frames,and the attention mechanism assigns different weights to unvoiced and voiced speech to reduce redundant emotional information caused by unvoiced speech.In the Wav2vec 2.0 branch,this model is introduced as a feature extractor to obtain general speech features(Wav2vec 2.0 features)through pre-training with a large amount of unlabeled speech data,which can assist the SER task and cope with data sparsity problems.In the cross-attention module,AM-ResNet features and Wav2vec 2.0 features are interacted with and fused to obtain the cross-fused features,which are used to predict the final emotion.Furthermore,multi-label learning is also used to add ambiguous emotion utterances to deal with data limitations.Finally,experimental results illustrate the usefulness and superiority of our proposed framework over existing state-of-the-art approaches. 展开更多
关键词 Speech emotion recognition Residual network MASK ATTENTION Wav2vec 2.0 Cross-feature fusion
在线阅读 下载PDF
SC-GAN:A Spectrum Cartography with Satellite Internet Based on Pix2Pix Generative Adversarial Network
7
作者 Zhen Pan Zhang Bangning +2 位作者 Wang Heng MaWenfeng Guo Daoxing 《China Communications》 2025年第2期47-61,共15页
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m... The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods. 展开更多
关键词 electromagnetic situation Pix2Pix generative adversarial network radio map satellite internet spectrum cartography
在线阅读 下载PDF
Network pharmacology-based study on the mechanism of Tangfukang formula(糖复康方) against type 2 diabetes mellitus
8
作者 YAN Kai WANG Wei +2 位作者 WANG Yan GAO Huijuan FENG Xingzhong 《Journal of Traditional Chinese Medicine》 2025年第1期76-88,共13页
OBJECTIVE:To explore the mechanism of Tangfukang formula(糖复康方,TFK)in treating type 2 diabetes mellitus(T2DM).METHODS:We employed network pharmacology combined with experimental validation to explore the potential ... OBJECTIVE:To explore the mechanism of Tangfukang formula(糖复康方,TFK)in treating type 2 diabetes mellitus(T2DM).METHODS:We employed network pharmacology combined with experimental validation to explore the potential mechanism of TFK against T2DM.Initially,we filtered bioactive compounds with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and Symptom Mapping(Sym Map),and gathered targets of TFK and T2DM.Subsequently,we constructed a protein-protein interaction(PPI)network,enriched core targets through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG),and adopted molecular docking to study the binding mode of compounds and the signaling pathway.Finally,we employed a KKAy mice model to investigate the effect and mechanism of TFK against T2DM.Biochemical assay,histology assay,and Western blot(WB)were used to assess the mechanism.RESULTS:There were 492 bioactive compounds of TFK screened,and 1226 overlapping targets of TFK against T2DM identified.A compound-T2DM-related target network with 997 nodes and 4439 edges was constructed.KEGG enrichment analysis identified some core pathways related to T2DM,including adenosine 5-monophosphate-activated protein kinase(AMPK)signaling pathway.Molecular docking study revealed that compounds of TFK,including citric acid,could bind to the active pocket of AMPK crystal structure with free binding energy of-4.8,-8 and-7.9,respectively.Animal experiments indicated that TFK decreased body weight,fasting blood glucose,fasting serum insulin,homeostasis model of insulin resistance,glycosylated serum protein,total cholesterol,triglyceride,and low-density lipoprotein cholesterol,and improve oral glucose tolerance test results.TFK reduced steatosis in liver tissue,and infiltration of inflammatory cells,and protected liver cells to a certain extent.WB analysis revealed that,TFK upregulated the phosphorylation of AMPK and branchedchainα-ketoacid dehydrogenase proteins.CONCLUSION:TFK has the potential to effectively manage T2DM,possibly by regulating the AMPK signaling pathway.The present study lays a new foundation for the therapeutic application of TFK in the treatment of T2DM. 展开更多
关键词 network pharmacology diabetes mellitus type 2 AMP-activated protein kinase kinases signal transduction MECHANICS Tangfukang formula
原文传递
Graph neural network-driven prediction of high-performance CO_(2)reduction catalysts based on Cu-based high-entropy alloys
9
作者 Zihao Jiao Chengyi Zhang +2 位作者 Ya Liu Liejin Guo Ziyun Wang 《Chinese Journal of Catalysis》 2025年第4期197-207,共11页
High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface compl... High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts. 展开更多
关键词 Density functional theory Machine learning CO_(2)reduction High entropy alloys Graph neural network
在线阅读 下载PDF
Mobility-Aware Edge Caching with Transformer-DQN in D2D-Enabled Heterogeneous Networks
10
作者 Yiming Guo Hongyu Ma 《Computers, Materials & Continua》 2025年第11期3485-3505,共21页
In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic natu... In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions. 展开更多
关键词 Mobile edge caching D2D heterogeneous networks deep reinforcement learning transformer model transmission delay optimization
在线阅读 下载PDF
Experimental and Neural Network Modeling of the Thermal Behavior of an Agricultural Greenhouse Integrated with a Phase Change Material(CaCl_(2)⋅6H_(2)O)
11
作者 Abdelouahab Benseddik Djamel Daoud +4 位作者 Ahmed Badji Hocine Bensaha Tarik Hadibi Yunfeng Wang Li Ming 《Energy Engineering》 2025年第12期5021-5037,共17页
In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Cha... In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Change Materials(PCM)is a promising solution to stabilize microclimatic conditions.This study aims to evaluate experimentally and numerically the effectiveness of PCM integration for moderating greenhouse temperature fluctuations under Saharan climatic conditions.Two identical greenhouse prototypes were constructed in Ghardaia,Algeria:a reference greenhouse and a PCM-integrated greenhouse using calcium chloride hexahydrate(CaCl_(2)⋅6H_(2)O).Thermal performance was assessed during a five-day experimental period(7–11May 2025)under severe ambient conditions.To complement this,a Nonlinear Auto-Regressive with eXogenous inputs(NARX)neural network model was developed and trained using a larger dataset(7–25 May 2025)to predict greenhouse thermal dynamics.The PCM greenhouse reduced peak daytime air temperature by an average of 8.14℃and decreased the diurnal temperature amplitude by 53.6%compared to the reference greenhouse.The NARX model achieved high predictive accuracy(R^(2)=0.990,RMSE=0.425℃,MAE=0.223℃,MBE=0.008℃),capturing both sensible and latent heat transfer mechanisms,including PCM melting and solidification.The combined experimental and predictive modeling results confirm the potential of PCM integration as an effective passive thermal regulation strategy for greenhouses in arid regions.This approach enhances microclimatic stability,improves energy efficiency,and supports the sustainability of protected agriculture under extreme climatic conditions. 展开更多
关键词 Agricultural greenhouse phase changematerial(PCM) CaCl_(2)⋅6H_(2)O thermal regulation NARX neural network experimental study modeling
在线阅读 下载PDF
The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus
12
作者 Qian Chen Shuying Zhang +6 位作者 Xuanxi Jiang Jie Liao Xin Shao Xin Peng Zheng Wang Xiaoyan Lu Xiaohui Fan 《Chinese Journal of Natural Medicines》 2025年第8期997-1008,共12页
Coptis chinensis Franch.and Panax ginseng C.A.Mey.are traditional herbal medicines with millennia of documented use and broad therapeutic applications,including anti-diabetic properties.However,the synergistic effect ... Coptis chinensis Franch.and Panax ginseng C.A.Mey.are traditional herbal medicines with millennia of documented use and broad therapeutic applications,including anti-diabetic properties.However,the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus(T2DM)and its underlying mechanism remain unclear.The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1,exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes.This combination demonstrated significant synergistic effects in improving glucose tolerance,reducing fasting blood glucose(FBG),the weight ratio of epididymal white adipose tissue(eWAT),and the homeostasis model assessment of insulin resistance(HOMA-IR)in leptin receptor-deficient(db/db)mice.Subsequently,a T2DM liver-specific network was constructed based on RNA sequencing(RNA-seq)experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions(PPIs).The network recovery index(NRI)score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components.The research identified that activated adenosine 5'-monophosphate-activated protein kinase(AMPK)/acetyl-CoA carboxylase(ACC)signaling in the liver played a crucial role in the synergistic treatment of T2DM,as verified by western blot experiment in db/db mice.These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice,surpassing the efficacy of individual treatments.The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity. 展开更多
关键词 Total alkaloids from Coptis chinensis ALKALOIDS Total ginsenosides from Panax ginseng Component compatibility network pharmacology Type 2 diabetes mellitus
原文传递
基于网络药理学探讨不忘散加味方治疗2型糖尿病轻度认知障碍的机制 被引量:3
13
作者 杨婕 秦玲玲 +4 位作者 吴丽丽 胡圣涓 王翔云 胡燕 刘铜华 《西部中医药》 2025年第5期24-30,共7页
目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database a... 目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)和BATMAN-TCM数据库筛选不忘散加味方的药物成分及潜在作用靶点;通过在线人类孟德尔遗传数据库(online mendelian inheritance in man,OMIM)及人类基因数据库(the human gene database,GeneCards)筛选疾病相关靶点,获取疾病与药物交集靶点,得出不忘散加味方治疗T2DM轻度认知障碍的潜在作用靶点;通过Cytoscape 3.8.2软件构建“药物-成分-作用靶点”网络;将疾病与药物交集靶点导入STRING数据库,构建蛋白-蛋白互作(proteinprotein interactions,PPI)网络,筛选核心靶点;借助核心靶基因导入基因功能注释数据库(the database for annotation visualization and integrated discovery,DAVID)对疾病与药物交集靶点做基因本体论(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析;通过AutoDock Vina软件对筛选出的关键成分与靶点进行分子对接,验证药物与疾病的作用关系。结果:共筛选得到不忘散加味方活性成分135个,不忘散加味方与T2DM轻度认知障碍交集靶点293个;获得槲皮素、β-谷甾醇、山柰酚、木犀草素、豆甾醇等关键活性化合物;筛选得到TP53、IL-6、AKT1、TNF、STAT3、IL-1β、EGFR、JUN、INS、BCL2等核心靶点;潜在作用靶点主要富集在脂质与动脉粥样硬化通路、糖尿病并发症AGE-RAGE、流体剪切应力与动脉粥样硬化通路等。结论:不忘散加味存在多种活性成分,可能通过多个潜在靶点、多条信号通路发挥对T2DM合并轻度认知障碍的治疗作用。 展开更多
关键词 2型糖尿病轻度认知障碍 不忘散加味方 作用机制 网络药理学 分子对接技术
暂未订购
网络药理学视角下山奈酚靶向BCL-2抑制肺癌的机制研究
14
作者 陈建栋 吕盈盈 +3 位作者 徐正 张苗 刘路遥 王鹏 《安徽医科大学学报》 北大核心 2025年第8期1373-1380,共8页
目的利用网络药理学方法探究中药栀子中活性成分山奈酚对肺癌治疗的潜在作用机制。方法通过中药系统药理数据库及分析平台(TCMSP)获取栀子的主要活性成分及其潜在作用靶点,并结合Gene Cards和OMIM数据库收集的肺癌相关靶点信息,通过绘... 目的利用网络药理学方法探究中药栀子中活性成分山奈酚对肺癌治疗的潜在作用机制。方法通过中药系统药理数据库及分析平台(TCMSP)获取栀子的主要活性成分及其潜在作用靶点,并结合Gene Cards和OMIM数据库收集的肺癌相关靶点信息,通过绘制韦恩图确定栀子与肺癌治疗相关的交集靶点。进一步通过蛋白质互作(PPI)网络分析筛选出核心靶点,并利用Metascape平台进行基因本体(GO)功能和京都基因和基因组百科全书(KEGG)通路富集分析。使用Auto dock软件评估栀子的有效成分与靶标蛋白的结合亲和力。实验方面,通过CCK-8实验评估细胞增殖能力,通过细胞划痕愈合实验和Transwell实验检测细胞迁移和侵袭能力,并通过Western blot和RT-qPCR检测上皮-间充质转化(EMT)蛋白及炎症因子的表达水平。结果栀子中的活性成分山奈酚表现出显著的与肺癌关键靶标B淋巴细胞瘤-2(BCL-2)的结合能力,且能抑制肺癌细胞的增殖、迁移和侵袭能力。Western blot和RT-qPCR的结果进一步证实山奈酚能够促进E-钙黏蛋白(E-cadherin)增加,N-钙黏蛋白(N-cadherin)、波形蛋白(Vimentin)降低,同时降低炎症因子表达。结论栀子活性成分山奈酚在通过靶向BCL-2抑制肺癌细胞的增殖、迁移、侵袭等能力的同时,逆转了EMT进展同时抑制了肺癌细胞炎症因子的表达水平,从而阻止肺癌进展。 展开更多
关键词 栀子 山奈酚 肺癌 BCL-2 网络药理学
暂未订购
基于网络药理学与实验验证研究地黄环烯醚萜苷调控AGEs/RAGE/MAPK通路保护2型糖尿病小鼠肝脏的作用机制
15
作者 王慧森 张宏伟 +3 位作者 刘明 梁瑞峰 张雪侠 张明利 《中草药》 北大核心 2025年第14期5061-5073,共13页
目的基于网络药理学和动物实验验证探讨地黄环烯醚萜苷类(Rehmannia glutinosa iridoid glycosides,RIG)治疗2型糖尿病(type 2 diabetes,T2DM)的作用机制。方法利用Swisstargetprediction和PharmMapper数据库预测筛选RIG相关作用靶点,O... 目的基于网络药理学和动物实验验证探讨地黄环烯醚萜苷类(Rehmannia glutinosa iridoid glycosides,RIG)治疗2型糖尿病(type 2 diabetes,T2DM)的作用机制。方法利用Swisstargetprediction和PharmMapper数据库预测筛选RIG相关作用靶点,OMMI、Genecard、DisGeNET数据库获取T2DM的相关靶标基因,将获得的共同靶点导入STRING数据库构建蛋白相互作用(protein-protein interaction,PPI)网络,Cytoscape软件构建“药物-成分-靶点”和核心靶点网络,通过DAVID数据库和微生信平台进行基因本体(gene ontology,GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。采用高糖高脂喂养联合ip链脲佐菌素建立T2DM小鼠模型,将造模成功的小鼠随机分为模型组、二甲双胍(250 mg/kg)组和RIG低、高剂量(200、400 mg/kg)组,每组9只,另取10只正常小鼠作为对照组。药物干预8周,每周测定体质量、空腹血糖(fasting blood glucose,FBG)。给药结束后,分离血清,检测低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)、高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)、胰岛素(fasting insulin,FINS)水平,并计算胰岛素抵抗指数(homeostasis model assessment of insulin resistance,HOMA-IR);采用苏木素-伊红(HE)、Masson和油红O染色观察小鼠肝脏病理变化;采用免疫组化法测定肝组织炎症因子白细胞介素-1(interleukin-1,IL-1)、IL-6、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)的表达量;采用Western blotting法检测肝组织晚期糖基化终末产物(advanced glycation end products,AGEs)、晚期糖基化末端受体(receptor for advanced glycation end products,RAGE)蛋白表达及p-p38丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)/p38 MAPK水平;采用qRT-PCR法检测肝组织RAGE、p38 MAPK mRNA表达。结果共筛选得到RIG治疗T2DM潜在靶点175个,关键核心靶点有原癌基因酪氨酸蛋白激酶Src(proto-oncogene tyrosine-protein kinase Src,SRC)、表皮生长因子受体(epidermal growth factor receptor,EGFR)、信号转导和转录激活因子3(signal transducer and activator of transcription 3,STAT3)等。GO富集分析显示潜在作用靶点主要涉及炎症反应的调节等生物过程,KEGG通路分析筛选得到了277条信号通路,显示脂质和动脉粥样硬化、AGEs/RAGE信号通路和MAPK信号通路可能在治疗T2DM过程中发挥关键作用。动物实验结果显示,与模型组比较,RIG可以降低T2DM小鼠饮水量、FBG、FINS、HOMA-IR、LDL-C水平(P<0.01),升高HDL-C水平(P<0.01),改善肝细胞形态,减轻肝损伤,减少胶原沉积及脂质沉积,抑制肝组织IL-1、IL-6、TNF-α表达(P<0.01),下调肝组织AGEs、RAGE、p-p38 MAPK/p38 MAPK蛋白表达及RAGE、p38 MAPK mRNA表达(P<0.05、0.01)。结论RIG能够有效降低T2DM小鼠FBG,改善胰岛素抵抗,减轻炎症反应,保护肝组织,其机制可能与调控AGEs/RAGE/MAPK信号通路有关。 展开更多
关键词 地黄环烯醚萜苷 2型糖尿病 网络药理学 肝损伤 AGEs/RAGE/MAPK信号通路
原文传递
基于网络药理学和实验验证探究柳蒿芽脂溶性成分调节2型糖尿病的作用机制
16
作者 徐艳华 华谦 +4 位作者 何祥 那仁朝克图 孙鑫颖 乌云嘎 王青虎 《天然产物研究与开发》 北大核心 2025年第5期965-973,共9页
利用网络药理学和实验验证研究柳蒿芽脂溶性成分(liposoluble components of Artemisia integrifolia L.bud,AILC)调节2型糖尿病(type 2 diabetes melitus,T2DM)的作用机制。首先,制备了AILC,并分离得到了24个化合物;运用SwissTargetPre... 利用网络药理学和实验验证研究柳蒿芽脂溶性成分(liposoluble components of Artemisia integrifolia L.bud,AILC)调节2型糖尿病(type 2 diabetes melitus,T2DM)的作用机制。首先,制备了AILC,并分离得到了24个化合物;运用SwissTargetPrediction数据库获取AILC靶点;利用GenCards、OMIM和TTD数据库获取T2DM疾病靶点。然后通过Venn、Cytoscape3.10.1、String和DAVID数据库分析AILC调节T2DM的潜在活性成分、核心靶点及作用通路之间的关系。最后,通过建立T2DM大鼠模型进行实验验证。网络药理学结果显示,AILC作用于T2DM关键靶点可能为蛋白激酶B、肿瘤坏死因子、白细胞介素-6、血管内皮生长因子A(vascular endothelial growth factor A,VEGFA)、氧化物酶体增殖物激活受体等。这些靶点主要富集在缺氧诱导因子-1信号通路、磷脂酰肌醇3激酶/蛋白激酶B信号通路、人类巨细胞病毒感染、非小细胞肺癌、松弛素信号通路。动物实验结果显示,AILC能明显降低大鼠血清总胆固醇、甘油三酯、血糖含量;免疫组化和蛋白质免疫印记法验证表明,AILC显著下调大鼠VEGFA表达量(P<0.05)。研究表明,柳蒿芽脂溶性成分通过调节VEGFA蛋白表达,调节糖脂代谢紊乱而对T2DM起到治疗作用。 展开更多
关键词 柳蒿芽脂溶性成分 网络药理学 血管内皮生长因子A 2型糖尿病 糖脂代谢
暂未订购
单面冻融后TiO_(2)混凝土光催化性能研究
17
作者 赵燕茹 刘兴源 +1 位作者 关鹤 张建新 《功能材料》 北大核心 2025年第9期9092-9102,共11页
研究nano-TiO_(2)混凝土冻融循环后光催化降解效率变化。通过单面冻融循环试验、NMR孔结构试验、光催化试验探究不同nano-TiO_(2)掺量、光照时长、冻融对混凝土光催化降解效率的影响规律和机理,用灰熵关联度法确定关联程度并建立灰色神... 研究nano-TiO_(2)混凝土冻融循环后光催化降解效率变化。通过单面冻融循环试验、NMR孔结构试验、光催化试验探究不同nano-TiO_(2)掺量、光照时长、冻融对混凝土光催化降解效率的影响规律和机理,用灰熵关联度法确定关联程度并建立灰色神经网络预测模型来预测冻融循环后TiO_(2)混凝土光催化降解效率。结果显示:nano-TiO_(2)混凝土试件光催化降解效率随光照时长、TiO_(2)掺量增加而增大,随冻融次数增加而降低,与微孔和大孔占比负相关、中孔正相关、裂缝无明显相关性,盐冻比水冻下降更显著,6%掺量TiO_(2)混凝土在水冻下紫外光照射4 h光催化降解效率最优。水冻及盐冻下,试验条件影响:TiO_(2)掺量>冻融次数;孔结构参数影响:束缚水饱和度>自由水饱和度>孔隙率;孔径分布影响:中孔>微孔>大孔。建立灰色BP神经网络模型,模型预测准确度高,稳定性好,更适用于nano-TiO_(2)混凝土光催化降解效率的预测。 展开更多
关键词 nano-TiO_(2) 混凝土 光催化性能 孔结构 灰色神经网络
在线阅读 下载PDF
基于网络药理学和动物实验模型探索覆盆子治疗2型糖尿病的分子机制研究
18
作者 姜新 成聪 +3 位作者 李华 卢雨溪 华东雪 常影 《吉林医药学院学报》 2025年第2期81-90,共10页
目的利用网络药理学和动物实验研究覆盆子治疗2型糖尿病的分子机制。方法利用TCMSP数据库确定覆盆子的有效成分及其作用靶点,并利用DisGeNET数据库和GeneCards数据库筛选2型糖尿病疾病靶点。将覆盆子的靶点与糖尿病的靶点相交,得到覆盆... 目的利用网络药理学和动物实验研究覆盆子治疗2型糖尿病的分子机制。方法利用TCMSP数据库确定覆盆子的有效成分及其作用靶点,并利用DisGeNET数据库和GeneCards数据库筛选2型糖尿病疾病靶点。将覆盆子的靶点与糖尿病的靶点相交,得到覆盆子治疗糖尿病的预测靶点。利用String数据库和Cytoscape软件建立蛋白质相互作用网络,构建新的子网络,并获得PPI网络中的关键节点基因。对靶标进行GO功能和KEGG通路分析。利用STZ制备2型糖尿病小鼠模型,给予覆盆子10周后检测空腹血糖,HOIMA-IR及炎性因子等指标。结果筛选出7种有效成分和78个预测靶点。核心靶点主要包括CAV1、TP53、RELA、TNF、IL-6等。涉及的主要信号通路包括NF-κB信号通路、TNF信号通路和AGE-RAGE信号通路。动物实验结果证实覆盆子对2型糖尿病小鼠降糖效果显著,同时血清中炎性因子显著降低。结论覆盆子可能通过多靶点、多途径作用参与糖尿病的治疗,如提高细胞活性和抗炎作用、调节糖脂代谢和改善胰岛素抵抗的治疗效果。动物实验结果表明抗炎可能是覆盆子降糖的主要机制之一。 展开更多
关键词 覆盆子 2型糖尿病 网络药理学 动物实验
暂未订购
钠-葡萄糖共转运蛋白2抑制剂致糖尿病酮症酸中毒/非高血糖性糖尿病酮症酸中毒风险的网状Meta分析
19
作者 黄文辉 华春红 +4 位作者 陈秋红 薛鸿林 张云琛 陈秀芬 陈锦珊 《中国医院用药评价与分析》 2025年第8期989-994,998,共7页
目的:系统评价钠-葡萄糖共转运蛋白2(SGLT-2)抑制剂发生糖尿病酮症酸中毒(DKA)和非高血糖性糖尿病酮症酸中毒(euDKA)的风险。方法:计算机检索PubMed、Embase、the Cochrane Library、ClinicalTrials.gov、中国知网、万方数据库和维普数... 目的:系统评价钠-葡萄糖共转运蛋白2(SGLT-2)抑制剂发生糖尿病酮症酸中毒(DKA)和非高血糖性糖尿病酮症酸中毒(euDKA)的风险。方法:计算机检索PubMed、Embase、the Cochrane Library、ClinicalTrials.gov、中国知网、万方数据库和维普数据库等,收集建库至2024年3月31日发表的SGLT-2抑制剂治疗后出现DKA/euDKA的相关文献。筛选文献、提取数据,根据Cochrane系统评价员手册6.4版的偏倚风险评估工具对文献质量进行评价,并应用RevMan 5.3软件记录和制图。采用ADDIS 1.16.5软件进行网状Meta分析和概率排序;采用Stata 16.0软件进行证据网络关系图绘制和发表偏倚分析。结果:共纳入32篇文献,包括83132例患者,涉及12种干预措施。网状Meta分析及概率排序结果显示,DKA的风险从高至低依次为卡格列净300 mg/d>艾格列净15 mg/d>艾格列净5 mg/d>卡格列净100 mg/d>索格列净400 mg/d>达格列净5 mg/d>索格列净200 mg/d>恩格列净10 mg/d>达格列净10 mg/d=恩格列净2.5 mg/d=恩格列净25 mg/d=安慰剂;euDKA的风险从高至低依次为达格列净>卡格列净>恩格列净>安慰剂。结论:卡格列净300 mg/d和达格列净可能分别是发生DKA和euDKA风险最高的SGLT-2抑制剂。对于合并DKA或euDKA其他诱因的患者,建议避免选择上述药物。由于当前纳入研究数据的数量和质量存在局限,需要未来开展更多高质量的随机对照研究进一步验证上述结论。 展开更多
关键词 钠-葡萄糖共转运蛋白2抑制剂 糖尿病酮症酸中毒 网状Meta分析
暂未订购
基于平衡优化算法-径向基神经网络的燃煤机组SO_(2)浓度动态软测量模型
20
作者 金秀章 史德金 乔鹏 《华北电力大学学报(自然科学版)》 北大核心 2025年第6期123-132,共10页
针对燃煤机组脱硫系统惯性大、影响因素多且实时性较差的问题,提出了一种基于平衡优化算法(Equilibrium Optimizer, EO)和径向基神经网络(Radial Basis Function Neural Network, RBFNN)的动态软测量模型。首先,利用灰色关联分析同时进... 针对燃煤机组脱硫系统惯性大、影响因素多且实时性较差的问题,提出了一种基于平衡优化算法(Equilibrium Optimizer, EO)和径向基神经网络(Radial Basis Function Neural Network, RBFNN)的动态软测量模型。首先,利用灰色关联分析同时进行变量筛选和时序调整;再结合控制理论知识,利用EO算法进行辅助变量的阶次选择;最后,使用包含延迟与阶次信息的输入变量作为模型输入,利用EO算法优化径向基神经网络参数,建立出口SO_(2)质量浓度预测模型(EO-RBFNN动态软测量模型)。然后将其与未加入迟延的RBFNN静态模型、加入迟延的RBFNN静态模型、粒子群优化算法(Particle Swarm Optimization, PSO)优化RBFNN网络参数的PSO-RBFNN动态软测量模型进行比较。结果显示,EO-RBFNN动态软测量模型的预测效果最好,相对误差最小。即使是在出口SO_(2)浓度剧烈波动时,模型也可以较准确地进行预测,具有较好的动态特性。 展开更多
关键词 SO_(2)浓度 平衡优化算法 灰色关联分析 径向基神经网络 软测量模型
在线阅读 下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部