For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a...Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.展开更多
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import...A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area.展开更多
A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the...A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the population, the NICGA has the advantages of decreasingthe population size, enhancing the local search ability, and improving the computational efficiencyand optimization precision. In a multi4ayer feed forward neural network model for predicting thesilicon content in hot metal, the NICGA was used to optimize the connection weights and thresholdvalues of the neural network to improve the prediction precision. The application results show thatthe precision of predicting the silicon content has been increased.展开更多
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca...Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency.展开更多
We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm op...We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration.展开更多
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t...The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.展开更多
Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorith...Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990.展开更多
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm ...Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.展开更多
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l...There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters.展开更多
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce...Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error.展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d...Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.展开更多
The paper introduces the basic concept and flow diagram of genetic algorithm (GA) and the merits and demerits of artificial neural network (ANN) as a timeseries prediction model and thereupon developed is a new model ...The paper introduces the basic concept and flow diagram of genetic algorithm (GA) and the merits and demerits of artificial neural network (ANN) as a timeseries prediction model and thereupon developed is a new model with ANN and GA in combination. Eventually, calculations are presented with the results and model examined.展开更多
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi...As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.展开更多
A photosynthetic rate model provides a theoretical basis for fine-grained control of light,and has become the key component to determine the effectiveness of light-controlled environments.Therefore,it is critical to i...A photosynthetic rate model provides a theoretical basis for fine-grained control of light,and has become the key component to determine the effectiveness of light-controlled environments.Therefore,it is critical to identify an intelligent algorithm that can be used to build an efficient and precise photosynthetic rate model.Depending on the initial weights of a BP(Back Propagation)neural network algorithm for arbitrary random numbers,the establishment of a regressive prediction model can be easily trapped in a partially-flat area.Existing photosynthetic rate models based on neural networks are facing problems such as a slow convergence speed and a long training time,and this study presents a photosynthetic rate model of a heuristic neural network for tomatoes based on a genetic algorithm to address the above problems.The performance of the model can be effectively improved using a genetic algorithm to optimize the initial weights.A multi-factor nesting experiment was firstly conducted to obtain 825 groups of tomato seedling photosynthesis rate test data in the foundation,and the photosynthetic rate model of the heuristic neural network for the tomato is established through BP network structure construction and data preprocessing.The genetic algorithm was used to optimize the network weights and threshold,and the LM(Levenberg-Marquardt)training method for network training.On this basis,the training performance and precision of the photosynthetic rate prediction models can be further compared with the genetic neural network model and the neural network model.The test results have shown that the training effects and accuracy of the genetic neural network prediction model of the photosynthetic rate were better than those of the neural network prediction model.The correlation coefficient between the model predicted data and the measured data is 0.987,and the absolute error of the photosynthetic rate is less than±0.5μmol/(m^(2)·s).展开更多
This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts bui...This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts building energy consumption and significantly affects outdoor thermal comfort.In NN-based long-term MRT prediction,two main restrictions must be overcome to achieve precise results:first,the difficulty of preparing numerous training datasets;second,the challenge of developing an accurate NN model.To overcome these restrictions,a combination of principal component analysis(PCA)and K-means clustering was employed to reduce the training data while maintaining high prediction accuracy.Second,three widely used NN models(feedforward NN(FFNN),backpropagation NN(BPNN),and BPNN optimized using a genetic algorithm(GA-BPNN))were compared to identify the NN with the best long-term MRT prediction performance.The performances of the tested NNs were evaluated using the mean absolute percentage error(MAPE),which was≤3%in each case.The findings indicate that the training dataset was reduced effectively by the PCA and K-means.Among the three NNs,the GA-BPNN produced the most accurate results,with its MAPE being below 1%.This study will contribute to the development of fast and feasible outdoor thermal environment prediction.展开更多
A genetic algorithm-determined deep feedforward neural network architecture(GA-DFNN)is proposed for both day-ahead hourly and week-ahead daily electricity consumption of a real-world campus building in the United King...A genetic algorithm-determined deep feedforward neural network architecture(GA-DFNN)is proposed for both day-ahead hourly and week-ahead daily electricity consumption of a real-world campus building in the United Kingdom.Due to the comprehensive relationship between affecting factors and real-world building electricity consumption,the adoption of multiple hidden layers in the deep neural network(DFNN)algorithm would improve its prediction accuracy.The architecture of a DFNN model mainly refers to its quantity of hidden layers,quantity of neurons in the hidden layers,activation function in each layer and learning process to obtain the connecting weights.The optimal architecture of DFNN model was generally determined through a trial-and-error process,which is an exponential combinatorial problem and a tedious task.To address this problem,genetic algorithm(GA)is adopted to automatically design an optimal architecture with improved generalization ability.One year and six months of measurement data from a campus building is used for training and testing the proposed GA-DFNN model,respectively.To demonstrate the effectiveness of the proposed GA-DFNN prediction model,its prediction performance,including mean absolute percentage error,coefficient of determination,root mean square error and mean absolute error,was compared to the reference feedforward neural network models with single hidden layer,DFNN models with other architecture,random search determined DFNN model,long-short-term-memory model and temporal convolutional network model.The comparison results show that the proposed GA-DFNN predictive model has superior performance than all the reference prediction models,demonstrating the optimization effectiveness of GA and the prediction effectiveness of DFNN model with multiple hidden layers and optimal architecture.展开更多
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
文摘Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.
基金supported by the National Natural Science Foundation of China(No.41002045)。
文摘A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area.
文摘A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the population, the NICGA has the advantages of decreasingthe population size, enhancing the local search ability, and improving the computational efficiencyand optimization precision. In a multi4ayer feed forward neural network model for predicting thesilicon content in hot metal, the NICGA was used to optimize the connection weights and thresholdvalues of the neural network to improve the prediction precision. The application results show thatthe precision of predicting the silicon content has been increased.
文摘Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency.
基金Funded by the High Technology Project(863) of the Ministry of Science and Technology of China(No. 2006AA06A305,6,7)
文摘We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration.
文摘The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.
文摘Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990.
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
文摘Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.
文摘There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters.
基金the support of the Department of Research and Development of Sarcheshmeh copper plants for this research
文摘Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error.
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
基金supported by the Universiti Kebangsaan Malaysia(DIP-2016-024).
文摘Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.
基金This work was funded by the Natural Science Foundation of Jiangsu
文摘The paper introduces the basic concept and flow diagram of genetic algorithm (GA) and the merits and demerits of artificial neural network (ANN) as a timeseries prediction model and thereupon developed is a new model with ANN and GA in combination. Eventually, calculations are presented with the results and model examined.
文摘As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.
基金This research is financial support by the research grants from National Natural Science Foundation of China(31501224 and 31671587)Shaanxi Province,Agricultural Science and Technology Innovation and Research Projects of China(2016NY-125).
文摘A photosynthetic rate model provides a theoretical basis for fine-grained control of light,and has become the key component to determine the effectiveness of light-controlled environments.Therefore,it is critical to identify an intelligent algorithm that can be used to build an efficient and precise photosynthetic rate model.Depending on the initial weights of a BP(Back Propagation)neural network algorithm for arbitrary random numbers,the establishment of a regressive prediction model can be easily trapped in a partially-flat area.Existing photosynthetic rate models based on neural networks are facing problems such as a slow convergence speed and a long training time,and this study presents a photosynthetic rate model of a heuristic neural network for tomatoes based on a genetic algorithm to address the above problems.The performance of the model can be effectively improved using a genetic algorithm to optimize the initial weights.A multi-factor nesting experiment was firstly conducted to obtain 825 groups of tomato seedling photosynthesis rate test data in the foundation,and the photosynthetic rate model of the heuristic neural network for the tomato is established through BP network structure construction and data preprocessing.The genetic algorithm was used to optimize the network weights and threshold,and the LM(Levenberg-Marquardt)training method for network training.On this basis,the training performance and precision of the photosynthetic rate prediction models can be further compared with the genetic neural network model and the neural network model.The test results have shown that the training effects and accuracy of the genetic neural network prediction model of the photosynthetic rate were better than those of the neural network prediction model.The correlation coefficient between the model predicted data and the measured data is 0.987,and the absolute error of the photosynthetic rate is less than±0.5μmol/(m^(2)·s).
基金This study was supported by a Grant-in-Aid for Challenging Research(Exploratory)(No.19K22004)the China Scholarship Council(No.201708430100).
文摘This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts building energy consumption and significantly affects outdoor thermal comfort.In NN-based long-term MRT prediction,two main restrictions must be overcome to achieve precise results:first,the difficulty of preparing numerous training datasets;second,the challenge of developing an accurate NN model.To overcome these restrictions,a combination of principal component analysis(PCA)and K-means clustering was employed to reduce the training data while maintaining high prediction accuracy.Second,three widely used NN models(feedforward NN(FFNN),backpropagation NN(BPNN),and BPNN optimized using a genetic algorithm(GA-BPNN))were compared to identify the NN with the best long-term MRT prediction performance.The performances of the tested NNs were evaluated using the mean absolute percentage error(MAPE),which was≤3%in each case.The findings indicate that the training dataset was reduced effectively by the PCA and K-means.Among the three NNs,the GA-BPNN produced the most accurate results,with its MAPE being below 1%.This study will contribute to the development of fast and feasible outdoor thermal environment prediction.
文摘A genetic algorithm-determined deep feedforward neural network architecture(GA-DFNN)is proposed for both day-ahead hourly and week-ahead daily electricity consumption of a real-world campus building in the United Kingdom.Due to the comprehensive relationship between affecting factors and real-world building electricity consumption,the adoption of multiple hidden layers in the deep neural network(DFNN)algorithm would improve its prediction accuracy.The architecture of a DFNN model mainly refers to its quantity of hidden layers,quantity of neurons in the hidden layers,activation function in each layer and learning process to obtain the connecting weights.The optimal architecture of DFNN model was generally determined through a trial-and-error process,which is an exponential combinatorial problem and a tedious task.To address this problem,genetic algorithm(GA)is adopted to automatically design an optimal architecture with improved generalization ability.One year and six months of measurement data from a campus building is used for training and testing the proposed GA-DFNN model,respectively.To demonstrate the effectiveness of the proposed GA-DFNN prediction model,its prediction performance,including mean absolute percentage error,coefficient of determination,root mean square error and mean absolute error,was compared to the reference feedforward neural network models with single hidden layer,DFNN models with other architecture,random search determined DFNN model,long-short-term-memory model and temporal convolutional network model.The comparison results show that the proposed GA-DFNN predictive model has superior performance than all the reference prediction models,demonstrating the optimization effectiveness of GA and the prediction effectiveness of DFNN model with multiple hidden layers and optimal architecture.