期刊文献+
共找到842篇文章
< 1 2 43 >
每页显示 20 50 100
Fundamentals and application in phytoremediation of an efficient arsenate reducing bacterium Pseudomonas putida ARS1
1
作者 Ze-Wen Wang Guang Yang +6 位作者 Jian Chen Yaoyu Zhou Avelino Nunez Delgado Hui-Ling Cui Gui-Lan Duan Barry P.Rosen Yong-Guan Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期237-244,共8页
Arsenic is a ubiquitous environmental pollutant.Microbe-mediated arsenic biotransformations significantly infuence arsenic mobility and toxicity.Arsenic transformations by soil and aquatic organisms have been well doc... Arsenic is a ubiquitous environmental pollutant.Microbe-mediated arsenic biotransformations significantly infuence arsenic mobility and toxicity.Arsenic transformations by soil and aquatic organisms have been well documented,while little is known regarding effects due to endophytic bacteria.An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil.P.putida ARS1 shows high tolerance to arsenite(As(Ⅲ))and arsenate(As(V)),and exhibits efficient As(V)reduction and As(Ⅲ)effux activities.When exposed to 0.6 mg/L As(V),As(V)in the medium was completely converted to As(Ⅲ)by P.putida ARS1 within 4 hr.Genome sequencing showed that P.putida ARS1 has two chromosomal arsenic resistance gene clusters(arsRCBH)that contribute to efficient As(V)reduction and As(Ⅲ)effux,and result in high resistance to arsenicals.Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation,which takes up As(Ⅲ)more efficiently than As(V).Co-culture of P.putida ARS1 and W.globosa enhanced arsenic accumulation in W.globosa by 69%,and resulted in 91%removal of arsenic(at initial concentration of 0.6 mg/L As(V))from water within 3 days.This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium. 展开更多
关键词 ARSENIC Pseudomonas putida arsenate reduction ENDOPHYTE Wolffia globosa PHYTOREMEDIATION
原文传递
Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii 被引量:6
2
作者 Xixiang Yin Lihong Wang +1 位作者 Guilan Duan Guoxin Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第7期1186-1193,共8页
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in fres... Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in freshwater aquatic systems. Arsenic metabolism processes of this alga through arsenate reduction and sequent store and efflux were investigated. When supplied with 10 μmol/L arsenate, arsenic speciation analysis showed that arsenite concentration increased from 5.7 to 15.7 mg/kg dry weight during a 7-day period, accounting for 18%–24% of the total As in alga. When treated with different levels of arsenate (10, 20, 30, 40, 50 μmol/L) for 7 days, the arsenite concentration increased with increasing external arsenate concentrations, the proportion of arsenite was up to 23%–28% of the total As in alga. In efflux experiments, both arsenate and arsenite could be found in the efflux solutions. Additionally, the efflux of arsenate was more than that of arsenite. Furthermore, two arsenate reductase genes of C. reinhardtii (CrACR2s) were cloned and expressed in Escherichia coli strain WC3110 (?arsC) for the first time. The abilities of both CrACR2s genes to complement the arsenate- sensitive strain were examined. CrACR2.1 restored arsenate resistance at 0.8 mmol/L. However, CrACR2.2 showed much less ability to complement. The gene products were demonstrated to reduce arsenate to arsenite in vivo. In agreement with the complementation results, CrACR2.1 showed higher reduction ability than CrACR2.2, when treated with 0.4 mmol/L arsenate for 16 hr incubation. 展开更多
关键词 arsenate ACCUMULATION REDUCTION EFFLUX arsenate reductase Chlamydomonas reinhardtii
原文传递
Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin 被引量:10
3
作者 何宗良 田森林 宁平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第6期563-572,共10页
The removal of arsenic from water and wastewater is obligatory. Resin is one of the most effective adsorbents for the removal of arsenic. In order to improve the adsorption capacity of resin, a new cerium-loaded catio... The removal of arsenic from water and wastewater is obligatory. Resin is one of the most effective adsorbents for the removal of arsenic. In order to improve the adsorption capacity of resin, a new cerium-loaded cation exchange resin arsenic adsorbent was prepared by impregnating cerium into the cation exchange resin. Batch adsorption experiments under various conditions, such as time, temperature, pH and with coexisting ions were carried out to evaluate the adsorption characteristics of cerium-loaded resin in the removal of As(V) and As(III) from aqueous solutions. The results showed that the adsorption kinetics of As(V) and As(III) obeyed a pseudo second-order kinetic model and the adsorption rate constants were 0.3159 and 0.5215 g.mg-1-min-1, respectively. The adsorption of As(V) followed the Freundlich adsorption isotherm model and the adsorption isotherm data for As(III) fitted well to the Langmuir equation model. The adsorption capacities were 1.0278 mg/g for As(V) and 2.5297 mg/g for As(Ill). Both the adsorption of As(V) and As(Ill) were found to be pH sensitive and the optimum pH was found to be 5-6. Except for the phosphate ion, the coexisting anionics, such as nitrate, chlorate, sulphate and carbonate, showed no remarkable effect on As(V) and As(ill) adsorption. The desorption and regeneration study showed that the adsorption capacity of Ce-loaded resin for As(V) and As(Ill) could be restored to 97.80% and 69.61%, respectively, using 0.5 moFL sodium hydroxide solution. 展开更多
关键词 arsenic pollution CERIUM RESIN arsenate ARSENITE ADSORPTION rare earths
原文传递
Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions 被引量:12
4
作者 Yanwei Guo Zhiliang Zhu +1 位作者 Yanling Qiu Jianfu Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第5期944-953,共10页
The mesoporous Cu/Mg/Fe layered double hydroxide(Cu/Mg/Fe-LDH) with carbonate intercalation was synthesized and used for the removal of arsenate from aqueous solutions.The Cu/Mg/Fe-LDH was characterized by Fourier t... The mesoporous Cu/Mg/Fe layered double hydroxide(Cu/Mg/Fe-LDH) with carbonate intercalation was synthesized and used for the removal of arsenate from aqueous solutions.The Cu/Mg/Fe-LDH was characterized by Fourier transform infrared spectrometry,X-ray diffraction crystallography,scanning electron microscopy,X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller.Effects of various physico-chemical parameters such as pH,adsorbent dosage,contact time and initial arsenate concentration on the adsorption of arsenate onto Cu/Mg/Fe-LDH were investigated.Results showed that it was efficient for the removal of arsenate,and the removal efficiency of arsenate increased with the increment of the adsorbent dosage,while the arsenate adsorption capacity decreased with increase of initial pH from 3 to 11.The adsorption isotherms can be well described by the Langmuir model with R 2 〉 0.99.Its adsorption kinetics followed the pseudo second-order kinetic model.Coexisting ions such as HPO42-,CO32-,SO42and NO3could compete with arsenate for adsorption sites on the Cu/Mg/Fe-LDH.The adsorption of arsenate on the adsorbent can be mainly attributed to the ion exchange process.It was found that the synthesized Cu/Mg/Fe-LDH can reduce the arsenate concentration down to a final level of 〈 10 μg/L under the experimental conditions,and makes it a potential material for the decontamination of arsenate polluted water. 展开更多
关键词 arsenate ADSORPTION mesoporous layered double hydroxide anion exchange
原文传递
Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate:Batch uptake behavior 被引量:8
5
作者 Xiaohong Guan Haoran Dong +1 位作者 Jun Ma Irene M. C. Lo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第3期372-380,共9页
Chromium and/or arsenate removal by Fe(Ⅱ) as a function of pH, Fe(Ⅱ) dosage and initial Cr(Ⅵ)/As(Ⅴ) ratio were examined in batch tests. The presence of arsenate reduced the removal efficiency of chromium b... Chromium and/or arsenate removal by Fe(Ⅱ) as a function of pH, Fe(Ⅱ) dosage and initial Cr(Ⅵ)/As(Ⅴ) ratio were examined in batch tests. The presence of arsenate reduced the removal efficiency of chromium by Fe(Ⅱ), while the presence of chromate significantly increased the removal efficiency of arsenate by Fe(Ⅱ) at pH 6-8, In the absence of arsenate, chromium removal by Fe(Ⅱ) increased to a maximum with increasing pH from 4 to 7 and then decreased with a further increase in pH. The increment in Fe(Ⅱ) dosage resulted in an improvement in chromium removal and the improvement was more remarkable under alkaline conditions than that under acidic conditions. Chromium removal by Fe(Ⅱ) was reduced to a larger extent under neutral and alkaline conditions than that under acidic conditions due to the presence of 10 μtmol/L arsenate. The presence of 20 μmol/L arsenate slightly improved chromium removal by Fe(Ⅱ) at pH 3.9-5,8, but had detrimental effects at pH 6.7-9.8. Arsenate removal was improved significantly at pH 4-9 due to the presence of 10μmol/L chromate at Fe(Ⅱ) dosages of 20-60 μmol/L. Elevating the chromate concentration from 10 to 20μmol/L resulted in a further improvement in arsenate removal at pH 4.0-4.6 when Fe(Ⅱ) was dosed at 30-60 μmol/L. 展开更多
关键词 chromium removal arsenate removal ferrous iron groundwater treatment
原文传递
Combined Effect of Fluoride and Arsenate on Gene Expression of Osteoclast Differentiation Factor and Osteoprotegerin 被引量:6
6
作者 LIN JIA TAI-YIJIN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第5期375-379,共5页
Objective To study the combined effect of fluoride and arsenate on the expression of SD rat osteoblastic osteoclast differentiation factor (ODF) mRNA and osteoprotegerin (OPG) mRNA. Methods Osteoblasts were obtain... Objective To study the combined effect of fluoride and arsenate on the expression of SD rat osteoblastic osteoclast differentiation factor (ODF) mRNA and osteoprotegerin (OPG) mRNA. Methods Osteoblasts were obtained by enzymatic isolation from newborn SD rats. A factorial experiment was performed. Osteoblasts were exposed to NaF (0.5 mmolF/L, 4 molF/L) and Na3AsH2 (12.5 μmolAs/L and 200 μmolAs/L) separately or F plus As and cultured for 48 h. The gene expression of osteoblastic ODF and OPG was observed by RT-PCR. Results The expression ofODF mRNA increased in F0.5, F4 groups compared with control group and two groups of F0.As200, F,As200 compared with As200 group, and decreased significantly in groups of F4As12.5, F0.5As200, and F4As200. The expression of OPG rnRNA decreased in groups of F4, As200, F4As12.5, F0.5As200, and F4As200. Conclusion The joint effect of fluoride and arsenate on the gene expression of ODF is antagonistic, while the combined effect on the gene expression of OPG is synergistic. F4, F4As12.5, and F0.5As200 promote bone resorption of rat osteoclasts, whereas F0.5As12.5 inhibits osteolytic effect of rat osteoclasts. 展开更多
关键词 FLUORIDE arsenate ODF OPG Combined effect
在线阅读 下载PDF
Competitive and cooperative adsorption of arsenate and citrate on goethite 被引量:5
7
作者 SHI Rong,JIA Yongfeng,WANG Chengzhi Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang 110016,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第1期106-112,共7页
The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly affected by coexisting dissolved natural organic acids. Recently, some st... The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly affected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006-0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no effect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the watergoethite interface as well. 展开更多
关键词 ADSORPTION arsenate CITRATE GOETHITE
在线阅读 下载PDF
Effects of pore size and dissolved organic matters on diffusion of arsenate in aqueous solution 被引量:3
8
作者 Yulong Wang Shaofeng Wang +1 位作者 Xin Wang Yongfeng Jia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期190-196,共7页
Presented here is the influence of membrane pore size and dissolved organic matters on the diffusion coefficient(D) of aqueous arsenate, investigated by the diffusion cell method for the first time. The p H-dependen... Presented here is the influence of membrane pore size and dissolved organic matters on the diffusion coefficient(D) of aqueous arsenate, investigated by the diffusion cell method for the first time. The p H-dependent diffusion coefficient of arsenate was determined and compared with values from previous studies; the coefficient was found to decrease with increasing p H, showing the validity of our novel diffusion cell method. The D value increased dramatically as a function of membrane pore size at small pore sizes, and then increased slowly at pore sizes larger than 2.0 μm. Using the Exp Assoc model, the maximum D value was determined to be 11.2565 × 10^-6cm^2/sec. The presence of dissolved organic matters led to a dramatic increase of the D of arsenate, which could be attributed to electrostatic effects and ionic effects of salts. These results improve the understanding of the diffusion behavior of arsenate, especially the important role of various environmental parameters in the study and prediction of the migration of arsenate in aquatic water systems. 展开更多
关键词 arsenate DIFFUSION PORE p H Dissolved organic matters MIGRATION
原文传递
Interaction mechanism between arsenate and fayalite-type copper slag at high temperatures 被引量:4
9
作者 Da-wei WANG Zong-wen ZHAO +3 位作者 Zhang LIN Yan-jie LIANG Li KANG Bing PENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期709-720,共12页
The interaction mechanism between sodium arsenate and fayalite-type copper slag at 1200℃was investigated through XRD,XPS,HRTEM,TCLP and other technical means and methods.The results indicated that the proportions of ... The interaction mechanism between sodium arsenate and fayalite-type copper slag at 1200℃was investigated through XRD,XPS,HRTEM,TCLP and other technical means and methods.The results indicated that the proportions of sodium arsenate in the slag and flue gas phases were approximately 30%and 70%,respectively.The addition of sodium arsenate depolymerized the fayalite structure and changed it from a crystalline state to an amorphous state.The fayalite structural changes indicated that the[AsO_(4)]tetrahedron in sodium arsenate combined with the[SiO_(4)]tetrahedron and[FeO_(4)]tetrahedron through bridging oxygen to form a silicate glass structure.The TCLP test results of the samples before and after the high temperature reaction of fayalite and sodium arsenate showed that after high temperature reaction,fayalite could effectively reduce the leaching toxicity of sodium arsenate,reducing the leaching concentration of arsenic from 3025.52 to 12.8 mg/L before and after reaction,respectively. 展开更多
关键词 FAYALITE sodium arsenate depolymerization reaction silicate glass structure
在线阅读 下载PDF
Stabilization of ferric arsenate sludge with mechanochemically prepared FeS2/Fe composites 被引量:3
10
作者 Xiao-bo MIN Tian-yu PENG +3 位作者 Yang-wen-jun LI Yong KE Yan-jie LIANG Xing-yu HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1983-1992,共10页
FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated... FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%. 展开更多
关键词 ARSENIC ferric arsenate sludge STABILIZATION mechanical milling FeS2/Fe composites
在线阅读 下载PDF
Removal of arsenate with hydrous ferric oxide coprecipitation: Effect of humic acid 被引量:12
11
作者 Jingjing Du Chuanyong Jing +2 位作者 Jinming Duan Yongli Zhang Shan Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期240-247,共8页
Insights from the adverse effect of humic acid (HA) on arsenate removal with hydrous ferric oxide (HFO) coprecipitation can further our understanding of the fate of As(V) in water treatment process. The motivati... Insights from the adverse effect of humic acid (HA) on arsenate removal with hydrous ferric oxide (HFO) coprecipitation can further our understanding of the fate of As(V) in water treatment process. The motivation of our study is to explore the competitive adsorption mechanisms of humic acid and As(V) on HFO on the molecular scale. Multiple complementary techniques were used including macroscopic adsorption experiments, surface enhanced Raman scattering (SERS), extended X-ray absorption fine structure (EXAFS) spectroscopy, flow-cell attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurement, and charge distribution multisite complexation (CD- MUSIC) modeling. The As(V) removal efficiency was reduced from over 95% to about 10% with the increasing HA concentration to 25 times of As(V) mass concentration. The SERS analysis excluded the HA-As(V) complex formation. The EXAFS results indicate that As(V) formed bidentate binuclear surface complexes in the presence of HA as evidenced by an As-Fe distance of 3.26--3.31 ,~. The in situ ATR-FTIR measurements show that As(V) replaces surface hydroxyl groups and forms inner- sphere complex. High concentrations of HA may physically block the surface sites and inhibit the As(V) access. The adsorption of As(V) and HA decreased the point of zero charge of HFO from 7.8 to 5.8 and 6.3, respectively. The CD-MUSIC model described the zeta potential curves and adsorption edges of As(V) and HA reasonably well. 展开更多
关键词 arsenate humic acid HFO adsorption multiple spectroscopic techniques
原文传递
Insights into the conversion of dissolved organic phosphorus favors algal bloom, arsenate biotransformation and microcystins release of Microcystis aeruginosa 被引量:2
12
作者 Xiaoyan Zhang Zhenhong Wang +2 位作者 Zhuanxi Luo Yan Chen Xuguang Huang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期205-214,共10页
Little information is available on influences of the conversion of dissolved organic phosphorus(DOP) to inorganic phosphorus(IP) on algal growth and subsequent behaviors of arsenate(As(V)) in Microcystis aeruginosa(M.... Little information is available on influences of the conversion of dissolved organic phosphorus(DOP) to inorganic phosphorus(IP) on algal growth and subsequent behaviors of arsenate(As(V)) in Microcystis aeruginosa(M. aeruginosa). In this study, the influences factors on the conversion of three typical DOP types including adenosine-5-triphosphate disodium salt(ATP), β-glycerophosphate sodium(βP) and D-glucose-6-phosphate disodium salt(GP)were investigated under different extracellular polymeric secretions(EPS) ratios from M.aeruginosa, and As(V) levels. Thus, algal growth, As(V) biotransformation and microcystins(MCs) release of M. aeruginosa were explored in the different converted DOP conditions compared with IP. Results showed that the three DOP to IP without EPS addition became in favor of algal growth during their conversion. Compared with IP, M. aeruginosa growth was thus facilitated in the three converted DOP conditions, subsequently resulting in potential algal bloom particularly at arsenic(As) contaminated water environment. Additionally, DOP after conversion could inhibit As accumulation in M. aeruginosa, thus intracellular As accumulation was lower in the converted DOP conditions than that in IP condition. As(V) biotransformation and MCs release in M. aeruginosa was impacted by different converted DOP with their different types. Specifically, DMA concentrations in media and As(III) ratios in algal cells were promoted in converted βP condition, indicating that the observed dissolved organic compositions from βP conversion could enhance As(V) reduction in M. aeruginosa and then accelerate DMA release. The obtained findings can provide better understanding of cyanobacteria blooms and As biotransformation in different DOP as the main phosphorus source. 展开更多
关键词 Organic phosphorus arsenate Phosphate Methylation Extracellular polymeric secretions
原文传递
Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels 被引量:7
13
作者 Feifei Che Miaomiao Du Changzhou Yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期41-49,共9页
The arsenate(As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen(N) and phosphorus(P) has been studied under laboratory conditions. When 15 μg/L As(V) wa... The arsenate(As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen(N) and phosphorus(P) has been studied under laboratory conditions. When 15 μg/L As(V) was added, N and P in the medium showed effective regulation on arsenic(As) metabolism in M. aeruginosa, resulting in significant differences in the algal growth among different N and P treatments. Under 0.2 mg/L P treatment, increases in N concentration(4–20 mg/L) significantly stimulated the cell growth and therefore indirectly enhanced the production of dimethylarsinic acid(DMA), the main As metabolite, accounting for 71%–79% of the total As in the medium. Meanwhile, 10–20 mg/L N treatments accelerated the ability of As metabolization by M. aeruginosa, leading to higher contents of DMA per cell.However, As(V) uptake by M. aeruginosa was significantly impeded by 0.5–1.0 mg/L P treatment,resulting in smaller rates of As transformation in M. aeruginosa as well as lower contents of As metabolites in the medium. Our data demonstrated that As(V) transformation by M. aeruginosa was significantly accelerated by increasing N levels, while it was inhibited by increasing P levels. Overall, both P and N play key roles in As(V) biotransformation processes. 展开更多
关键词 arsenate Biotransformation Nitrogen Phosphorus M.aeruginosa
原文传递
Mitochondrial dysfunction,oxidative stress and apoptotic induction in microglial BV-2 cells treated with sodium arsenate 被引量:5
14
作者 Wafa Kharroubi Samia Hai Ahmed +4 位作者 Thomas Nury Pierre Andreoletti Rachid Sakly Mohamed Hammami Gerard Lizard 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期44-51,共8页
The treatment of microglial BV-2 cells with sodium arsenate(As(V):0.1-400 μmol/L — 48 hr)induces a dose-dependent response.The neurotoxic effects of high concentrations of As(V)(100,200 and 400 μmol/L) are... The treatment of microglial BV-2 cells with sodium arsenate(As(V):0.1-400 μmol/L — 48 hr)induces a dose-dependent response.The neurotoxic effects of high concentrations of As(V)(100,200 and 400 μmol/L) are characterized by increased levels of mitochondrial complexesⅠ,Ⅱ,and Ⅳ followed by increased superoxide anion generation.Moreover,As(V) triggers an apoptotic mode of cell death,demonstrated by an apoptotic SubG1 peak,associated with an alteration of plasma membrane integrity.There is also a decrease in transmembrane mitochondrial potential and mitochondrial adenosine triphosphate ATP.It is therefore tempting to speculate that As(V) triggers mitochondrial dysfunction,which may lead to defective oxidative phosphorylation subsequently causing mitochondrial oxidative damage,which in turn induces an apoptotic mode of cell death. 展开更多
关键词 Sodium arsenate Microglial BV-2 cells Mitochondrial dysfunction Oxidative phosphorylation complexes Superoxide anions Apoptosis
原文传递
Oxidation Characteristics of the Reactivity Between Pyrite and Aqueous Arsenate 被引量:1
15
作者 Yongling Liu Songhai Wu +2 位作者 Shaoyi Jia Zongsheng Liang Xu Han 《Transactions of Tianjin University》 EI CAS 2019年第4期371-380,共10页
Natural pyrites contain high levels of adsorbed and structurally incorporated arsenic(As),which may simultaneously result in the release of As and affect the oxidation process of pyrite.However,the oxidation and elect... Natural pyrites contain high levels of adsorbed and structurally incorporated arsenic(As),which may simultaneously result in the release of As and affect the oxidation process of pyrite.However,the oxidation and electrochemical behaviors of As on the oxidation reactivity of pyrites are still not clear.In this study,pyrite was prepared by a hydrothermal method and applied to study the oxidation mechanism between pyrite and aqueous arsenate.Analyses of X-ray diffraction,X-ray photoelectron spectroscopy,and scanning electron microscopy demonstrate that the as-prepared sample is an octahedron-like pyrite with high purity and crystallinity.The interaction between As(V)and pyrite as well as the electrochemical behaviors of pyrite oxidation in the presence of aqueous arsenate were investigated under acidic conditions by an ion analysis method,cyclic voltammetry(CV),Tafel,and electrochemical impedance spectroscopy(EIS).The results of the chemical reaction indicate that electrons are transferred from S 22-to dissolved oxygen with the formation of SO 42-in the initial As(V)concentration range of 0–0.3 mmol/L.In the initial As(V)concentration range of 0.4–1.2 mmol/L,electrons are transferred from S 22-to As(V)with the formation of elemental S 0 and As(III).The CV,the Tafel plot and EIS analyses indicate that aqueous arsenate in an electrolyte promotes oxidation reactivity and passivation of the pyrite electrode.Moreover,the electron transfer rate increases with increasing aqueous arsenate concentration in the electrolyte. 展开更多
关键词 PYRITE AQUEOUS arsenate PYRITE electrode Oxidation REACTIVITY ELECTROCHEMISTRY
在线阅读 下载PDF
Decoupling the adsorption mechanisms of arsenate at molecular level on modified cube-shaped sponge loaded superparamagnetic iron oxide nanoparticles 被引量:1
16
作者 Xiang-Yang Lou Roberto Boada +3 位作者 Veronica Verdugo Laura Simonelli Gustavo Pérez Manuel Valiente 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第11期1-12,共12页
In this study, a commercial cube-shaped open-celled cellulose sponge adsorbent was modified by in-situ co-precipitation of superparamagnetic iron oxide nanoparticles(SPION) and used to remove As(V) from aqueous soluti... In this study, a commercial cube-shaped open-celled cellulose sponge adsorbent was modified by in-situ co-precipitation of superparamagnetic iron oxide nanoparticles(SPION) and used to remove As(V) from aqueous solutions. Fe K-edge X-ray absorption spectroscopy(XAS) and TEM identified maghemite as the main iron phase of the SPION nanoparticles with an average size 13 nm. Batch adsorption experiments at 800 mg/L showed a 63% increase of adsorption capacity when loading 2.6 wt.% mass fraction of SPION in the cube-sponge.Experimental determination of the adsorption thermodynamic parameters indicated that the As(V) adsorption on the composite material is a spontaneous and exothermic process.As K-edge XAS results confirmed that the adsorption enhancement on the composite can be attributed to the nanoparticles loaded. In addition, adsorbed As(V) did not get reduced to more toxic As(Ⅲ) and formed a binuclear corner-sharing complex with SPION. The advantageous cube-shape of the sponge-loaded SPION composite together with its high affinity and good adsorption capacity for As(V), good regeneration capability and the enhanceddiffusion attributed to its open-celled structure make this adsorbent a good candidate for industrial applications. 展开更多
关键词 Adsorption Cube composite adsorbent arsenate removal REGENERATION X-ray absorption spectroscopy
原文传递
Synthesis and characterization of arsenate antimonic acid AAAc(1 : 1) 被引量:2
17
作者 WANG Xue-wen CHEN Qi-yuan YIN Zhou-lan ZHANG Ping-min WANG Yu-wen 《Journal of Central South University of Technology》 2005年第z1期76-81,共6页
The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1: AAAc(1 : 1)was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vsof As-OH, As-... The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1: AAAc(1 : 1)was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vsof As-OH, As-O-Sb, Sb-OH and Sb-O-Sb in Raman spectra of AAAc(1 : 1) at 100 - 1 000 cm-1. The solution of AAAc(1 : 1) was also titrated with KOH solution. The titration results show that AAAc(1 : 1) is a hexabasic acid with dissociation constants of k1 = 3.62 × 10-2 , k2 = 3.05 × 10-3 , k3 = 6. 43 × 10-6 , k4 = 9. 78 × 10-8 ,k5 = 1.32 × 10-11 , k6 =3.87 × 10-12. AAAc(1 : 1) has a good solubility and stability in water, its solid obtained by free volatilizing water from its solution under air at ambient temperature is amorphous. Chemical and thermal analyture of AsO ( OH )2-OH-Sb ( OH )4-O-Sb ( OH )4-OH-AsO ( OH )2 or As ( OH )3-O-Sb(OH)4-O-Sb(OH)4-O-As(OH)3 (isomerism) through experimental determination and geometry optimization. 展开更多
关键词 ARSENIC ACID antimonic ACID arsenate antimonic ACID
在线阅读 下载PDF
Sorption Kinetic of Arsenate as Water Contaminant on Zero Valent Iron 被引量:1
18
作者 Osama Eljamal Keiko Sasaki Tsuyoshi Hirajima 《Journal of Water Resource and Protection》 2013年第6期563-567,共5页
This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsena... This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsenate varies from 0.5 to 200 mg/l. A kinetic model was considered to describe the arsenates sorption on ZVI material. The kinetics of the arsenate sorption processes were described by the Langmuir kinetic model. The sorption capacity increases with high initial concentration which obtained the maximum sorption 2.1 mg/g at 200 mg/l of arsenate initial concentration. The results show that the rapid initial sorption rates of arsenate were occurred at the beginning of experiments running time, followed by a slower removal that gradually approaches an equilibrium condition. The data from laboratory batch experiments were used to verify the simulation results of the kinetic model resulting in good agreement between measured and modeled results. The results indicate that ZVI could be employed as sorbent materials to enhance the sorption processes and increase the removal rate of arsenate from water. 展开更多
关键词 Arsenic SORPTION LANGMUIR KINETIC Model Zero-Valent IRON Removal of arsenate Iron(III)
在线阅读 下载PDF
Enhanced adsorption of arsenate by spinel zinc ferrite nano particles: Effect of zinc content and site occupation
19
作者 Can Wu Yunyun Xu +3 位作者 Si Xu Jingwei Tu Chen Tian Zhang Lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第5期248-255,共8页
In this work, zinc ferrite spinel with different zinc contents(ZnxFe_3-xO_4) was synthesized by a hydrothermal method and used for removing As(V) in aqueous solution. X-ray diffraction(XRD) results indicated that in t... In this work, zinc ferrite spinel with different zinc contents(ZnxFe_3-xO_4) was synthesized by a hydrothermal method and used for removing As(V) in aqueous solution. X-ray diffraction(XRD) results indicated that in the crystal structure of ZnxFe_3-xO_4, the zinc atoms tended to occupy the octahedral sites for x < 0.6 and diffused into the tetrahedral sites gradually with x > 0.6. The size of ZnxFe_3-xO_4 crystallites increased with the increasing zinc content. Batch adsorption experiments showed that the adsorption isotherms could be well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second-order kinetic model. Zinc ferrite exhibited the highest adsorption capacity towards As(V) when x = 0.6. Study of the mechanism indicated that doping with zinc increased the number of surface hydroxyl groups on ferrite spinel, and thus enhanced the adsorption capacity when x = 0.6. This work revealed the effects of doping site and content of metal atoms on the adsorption ability of ferrite spinel towards As(V). 展开更多
关键词 Zinc FERRITE arsenate ADSORPTION Atom OCCUPANCY HYDROXYL groups
原文传递
Insights into the Effect of a Natural Arsenate Dose on Growth,Nodulation and Redox Metabolism of Soybean Plants
20
作者 Eliana BIANUCCI Ana FURLAN +1 位作者 Luis E.HERNáNDEZ Stella CASTRO 《Pedosphere》 SCIE CAS CSCD 2019年第4期527-533,共7页
Dear Editor, Arsenic (As) is a harmful metalloid that occurs in soil and water;its concentration varies considerably among geographic regions, with groundwater being the principal source of human contamination (Smedle... Dear Editor, Arsenic (As) is a harmful metalloid that occurs in soil and water;its concentration varies considerably among geographic regions, with groundwater being the principal source of human contamination (Smedley and Kinniburgh, 2002). Besides the direct contamination effect of drinking water that contains high As concentration, human poisoning may also occur after ingestion of contaminated food. 展开更多
关键词 NATURAL arsenate SOYBEAN Plants Redox METABOLISM
原文传递
上一页 1 2 43 下一页 到第
使用帮助 返回顶部