Rice bacterial blight is a devastating disease worldwide,causing significant yield losses.Understanding how plants defend against microbial infection is critical for sustainable crop production.In this study,we show t...Rice bacterial blight is a devastating disease worldwide,causing significant yield losses.Understanding how plants defend against microbial infection is critical for sustainable crop production.In this study,we show that ALEX1,a previously identified pathogen-induced long noncoding RNA,localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3(ARF3).We showed that ARF3 forms the condensates in the nucleus via its intrinsically disordered middle region(MR),and that these ARF3 condensates display solid-like properties.We further revealed that ALEX1 directly binds the MR of ARF3 to regulate ARF3 condensate dynamics and promote ARF3 homodimerization.The dispersed,dimeric form of ARF3,referred to as its functional phase state,enhances its ability to transcriptionally repress the expression of downstream target genes such as JAZ13,thereby modulating the jasmonic acid signaling pathway and enhancing pathogen resistance in rice.Collectively,this study reveals the role of a long noncoding RNA in regulating protein condensation and complex assembly,thus contributing to plant pathogen resistance.展开更多
基金supported by the Key Areas Research and Development Programs of Guangdong Province(2022B202060005)the National Natural Science Foundation of China(no.31970606 to Y.Y.,no.32300440 to LM.-Q.L.,and 32200441 to J.-P.L.)the grants from Guangdong Province(2023A1515012791 and 2022A1515010858 to J.-P.L.).
文摘Rice bacterial blight is a devastating disease worldwide,causing significant yield losses.Understanding how plants defend against microbial infection is critical for sustainable crop production.In this study,we show that ALEX1,a previously identified pathogen-induced long noncoding RNA,localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3(ARF3).We showed that ARF3 forms the condensates in the nucleus via its intrinsically disordered middle region(MR),and that these ARF3 condensates display solid-like properties.We further revealed that ALEX1 directly binds the MR of ARF3 to regulate ARF3 condensate dynamics and promote ARF3 homodimerization.The dispersed,dimeric form of ARF3,referred to as its functional phase state,enhances its ability to transcriptionally repress the expression of downstream target genes such as JAZ13,thereby modulating the jasmonic acid signaling pathway and enhancing pathogen resistance in rice.Collectively,this study reveals the role of a long noncoding RNA in regulating protein condensation and complex assembly,thus contributing to plant pathogen resistance.