针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法在局部阴影条件下易陷入局部最优以及粒子群优化算法(Particle Swarm Optimization,PSO)存在的收敛速度慢和易陷入局部最优等问题,提出一种基于自适应粒子群优化(Adapt...针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法在局部阴影条件下易陷入局部最优以及粒子群优化算法(Particle Swarm Optimization,PSO)存在的收敛速度慢和易陷入局部最优等问题,提出一种基于自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO)算法的复合MPPT方法。在APSO中,初始化阶段使用拉丁超立方抽样代替随机初始化,使用自适应惯性权重策略来平衡算法的探索和开发,在提高算法收敛速度的同时,避免陷入局部最优解。通过仿真实验证明该算法在局部阴影下能够跳出局部最优,快速收敛到最大功率点处,与LPSO、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。展开更多
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自...软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。展开更多
文摘针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法在局部阴影条件下易陷入局部最优以及粒子群优化算法(Particle Swarm Optimization,PSO)存在的收敛速度慢和易陷入局部最优等问题,提出一种基于自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO)算法的复合MPPT方法。在APSO中,初始化阶段使用拉丁超立方抽样代替随机初始化,使用自适应惯性权重策略来平衡算法的探索和开发,在提高算法收敛速度的同时,避免陷入局部最优解。通过仿真实验证明该算法在局部阴影下能够跳出局部最优,快速收敛到最大功率点处,与LPSO、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。