To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomen...During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.展开更多
Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite(ALOS)Phased Array-type L-band Synthetic Ap...Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite(ALOS)Phased Array-type L-band Synthetic Aperture Radar(PALSAR).This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications,and its formation cause,morphology,and negative influence have been deeply investigated.However,this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation.In this paper,a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed.Firstly,sublook processing is beneficial for recovering the scattered stripes from a single-look complex image;the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image.Secondly,the amplitude spectrum density function(SDF)is estimated from the amplitude stripe pattern.Thirdly,a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs.In addition,another key parameter,the scintillation index,can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index.The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes.Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines.Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System(GPS)measurements.The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.展开更多
Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike sc...Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.展开更多
Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi...Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.展开更多
The multifunctional integration system(MFIS)is based on a common hardware platform that controls and regulates the system’s configurable parameters through software to meet dif-ferent operational requirements.Dwell s...The multifunctional integration system(MFIS)is based on a common hardware platform that controls and regulates the system’s configurable parameters through software to meet dif-ferent operational requirements.Dwell scheduling is a key for the system to realize multifunction and maximize the resource uti-lization.In this paper,an adaptive dwell scheduling optimization model for MFIS which considers the aperture partition and joint radar communication(JRC)waveform is established.To solve the formulated optimization problem,JRC scheduling condi-tions are proposed,including time overlapping condition,beam direction condition and aperture condition.Meanwhile,an effec-tive mechanism to dynamically occupy and release the aperture resource is introduced,where the time-pointer will slide to the earliest ending time of all currently scheduled tasks so that the occupied aperture resource can be released timely.Based on them,an adaptive dwell scheduling algorithm for MFIS with aperture partition and JRC waveform is put forward.Simulation results demonstrate that the proposed algorithm has better com-prehensive scheduling performance than up-to-date algorithms in all considered metrics.展开更多
The purpose of this study is to analyze the impact of upper ocean dynamics on velocity bunching,represented by az-imuthal cutoff wavelength(i.e.,sea surface wind,wave,and current).In this study,over 1400 dual-polarize...The purpose of this study is to analyze the impact of upper ocean dynamics on velocity bunching,represented by az-imuthal cutoff wavelength(i.e.,sea surface wind,wave,and current).In this study,over 1400 dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))Sentinel-1(S-1)synthetic aperture radar(SAR)images collected in tropical cyclones(TC)are utilized.These images are combined with wind and rain observations from the stepped-frequency microwave radiometer(SFMR),wave simu-lations conducted using a third-generation numerical wave model,WAVEWATCH-III(WW3),and SAR-derived wind information collected from CyclObs winds.The WW3-simulated significant wave height(SWH)is validated against measurements from HY-2B altimeter taken in August and September 2021,yielding a root mean square error(RMSE)of 0.48 m and a correlation coefficient(COR)of 0.88.The SAR-based azimuthal cutoff wavelengths in VV polarization,which quantitatively represent the effect of velocity bunching,are compared with theoretical values calculated using WW3-simulated SWH.A notable relationship is observed between the difference in azimuthal cutoff wavelength and SAR-derived wind speed and WW3-simulated SWH.Analysis results show that the correlation between SAR-based azimuthal cutoff wavelength and SWH is stronger than that with wind and current.Finally,a machine learning algorithm is used to develop an algorithm aimed at simulating the azimuthal cutoff wavelength in TCs,including wind,wave,and incidence angle.This method yields an RMSE of 8.90 m,a COR of 0.91,and a scatter index of 0.04 for VV-polar-ization SAR.展开更多
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Xizang,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than...Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks.展开更多
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for...Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm.展开更多
Obtaining precise position of interested emitters passively has wide applications in both civilian and military fields.Different from traditional parameter measurement and direct position determination(DPD)method,rece...Obtaining precise position of interested emitters passively has wide applications in both civilian and military fields.Different from traditional parameter measurement and direct position determination(DPD)method,recently a new passive localization method based on synthetic aper-ture technique,named synthetic aperture positioning(SAP),has been proposed.The method com-pensates for the nonlinear phase produced by relative motion between the moving platform and the emitter,achieving coherent summation of intercepted signals.The SAP can obtain high-resolution and high-precision localization results at a low signal-to-noise ratio.This paper summarizes the research progress of SAP,including localization principles,spaceborne applications,and application scope analysis.Besides,the possible future outlook of SAP is considered.展开更多
The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to ach...The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).展开更多
The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the...The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.展开更多
The purpose of our work is to analyze the effect of wave breaking on dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))synthetic aperture radar(SAR)image in the C-band during tropical cyclones(TCs)based ...The purpose of our work is to analyze the effect of wave breaking on dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))synthetic aperture radar(SAR)image in the C-band during tropical cyclones(TCs)based on the machine learning method.In this study,more than 1300 Sentinel-1(S-1)interferometric-wide(IW)and extra wide(EW)mode SAR images are collocated with wave simulations from the WAVEWATCH-III(WW3)model during 400 TCs.The validation of the significant wave height(SWH)simulated using the WW3 model against Jason-2 altimeter data.The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization.The non-polarized(NP)contributionσ_(wb)caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section(NRCS)σ_(0)minus the Bragg resonant roughnessσbr without the distortion of rain cells during TCs.Theσbr is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model.It is found that the ratio(σ_(wb)/σ_(0))in VV polarization is related to the wind speed,the wind direction relative with the flight orientation,and radar incidence angle.Following this rationale,the Adaptive Boosting(AdaBoost)model was used for the estimation of NP contributionσ_(wb)during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model.It is found that for the comparison between the sum of simulation NRCS and SAR observations,the root mean squared error(RMSE)is 1.95 dB and the coefficient(COR)is 0.86,which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model.It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.展开更多
Managing server lost circulation is a major challenge of drilling operation in naturally fractured formations and it causes much nonproductive rig time. When encountered with loss, the fracture aperture intersecting t...Managing server lost circulation is a major challenge of drilling operation in naturally fractured formations and it causes much nonproductive rig time. When encountered with loss, the fracture aperture intersecting the wellbore is not well-identified in time, which has a significant impact on the decision of drilling operation and the undesired result of loss curing. Therefore, the onset of fracture is identified in a timely manner and evaluated comprehensively to formulate an appropriate strategy over time. However, the mud loss date, which is the primary source of information retrieved from the drilling process, was not properly used in real-time prediction of fracture aperture. This article provides a detailed mathematical study to discuss the mechanism of mud invasion in the near-wellbore region and prediction of fracture aperture. The fracture aperture can be calculated from mud-loss data by solving a cubic equation with input parameters given by the well radius, the overpressure ratio, and the maximum mud-loss volume. It permits the proper selection of loss-circulation material (LCM) with respect to particle size distribution and fiber usage. The case study illustrates the applicability of this methodology with a discussion on LCM particle distribution in different scenarios and the result demonstrates the outcome of inappropriate LCM usage and the advantages of the novel fiber-based LCM treatment.展开更多
As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A ph...As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.展开更多
We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson's theory. Six crack models were embedded with equa...We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson's theory. Six crack models were embedded with equal-radius penny-shaped crack inclusions in each layer. The P-wave velocity and amplitude were measured parallel and perpendicular to the layers of cracks at frequencies of 0.1 MHz to 1 MHz. The experiments show that as the crack aperture increases from 0.l mm to 0.34 mm, the amplitude of the P-waves parallel to the crack layers decreases linearly with increasing frequency and the P-wave velocity dispersion varies from 1.5% to 2.1%, whereas the amplitude of the P-wave perpendicular to the crack layers decreases quadratically with increasing frequency and the velocity dispersion varies from 1.9% to 4.7%. The variation in the velocity dispersion parallel and perpendicular to the cracks intensifies the anisotropy dispersion of the P-waves in the crack models (6.7% to 83%). The P-wave dispersion strongly depends on the scattering characteristics of the crack apertures.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
基金support of the National Natural Science Foundation of China(U23B6004 and 52404045)the CAST Young Talent Support Program,Doctoral Student Special Project.
文摘During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.
基金supported partly by the National Natural Science Foundation of China(NSFC)(62101568 and 62371460)the Scientific Research Program of the National University of Defense Technology(ZK21-06)the Taishan Scholars of Shandong Province(ts20190968)。
文摘Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite(ALOS)Phased Array-type L-band Synthetic Aperture Radar(PALSAR).This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications,and its formation cause,morphology,and negative influence have been deeply investigated.However,this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation.In this paper,a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed.Firstly,sublook processing is beneficial for recovering the scattered stripes from a single-look complex image;the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image.Secondly,the amplitude spectrum density function(SDF)is estimated from the amplitude stripe pattern.Thirdly,a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs.In addition,another key parameter,the scintillation index,can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index.The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes.Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines.Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System(GPS)measurements.The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.
基金supported by the National Nat-ural Science Foundation of China(No.42376174)the Natural Science Foundation of Shanghai(No.23ZR 1426900).
文摘Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.
基金supported by the National Natural Science Foundation of China(62001481,61890542,62071475)the Natural Science Foundation of Hunan Province(2022JJ40561)the Research Program of National University of Defense Technology(ZK22-46).
文摘Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.
基金supported by the National Natural Science Foundation of China(6203100762371093).
文摘The multifunctional integration system(MFIS)is based on a common hardware platform that controls and regulates the system’s configurable parameters through software to meet dif-ferent operational requirements.Dwell scheduling is a key for the system to realize multifunction and maximize the resource uti-lization.In this paper,an adaptive dwell scheduling optimization model for MFIS which considers the aperture partition and joint radar communication(JRC)waveform is established.To solve the formulated optimization problem,JRC scheduling condi-tions are proposed,including time overlapping condition,beam direction condition and aperture condition.Meanwhile,an effec-tive mechanism to dynamically occupy and release the aperture resource is introduced,where the time-pointer will slide to the earliest ending time of all currently scheduled tasks so that the occupied aperture resource can be released timely.Based on them,an adaptive dwell scheduling algorithm for MFIS with aperture partition and JRC waveform is put forward.Simulation results demonstrate that the proposed algorithm has better com-prehensive scheduling performance than up-to-date algorithms in all considered metrics.
基金supported by the National Natural Science Foundation of China(Nos.42076238,42376174)the Natural Science Foundation of Shanghai(No.23ZR1426900).
文摘The purpose of this study is to analyze the impact of upper ocean dynamics on velocity bunching,represented by az-imuthal cutoff wavelength(i.e.,sea surface wind,wave,and current).In this study,over 1400 dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))Sentinel-1(S-1)synthetic aperture radar(SAR)images collected in tropical cyclones(TC)are utilized.These images are combined with wind and rain observations from the stepped-frequency microwave radiometer(SFMR),wave simu-lations conducted using a third-generation numerical wave model,WAVEWATCH-III(WW3),and SAR-derived wind information collected from CyclObs winds.The WW3-simulated significant wave height(SWH)is validated against measurements from HY-2B altimeter taken in August and September 2021,yielding a root mean square error(RMSE)of 0.48 m and a correlation coefficient(COR)of 0.88.The SAR-based azimuthal cutoff wavelengths in VV polarization,which quantitatively represent the effect of velocity bunching,are compared with theoretical values calculated using WW3-simulated SWH.A notable relationship is observed between the difference in azimuthal cutoff wavelength and SAR-derived wind speed and WW3-simulated SWH.Analysis results show that the correlation between SAR-based azimuthal cutoff wavelength and SWH is stronger than that with wind and current.Finally,a machine learning algorithm is used to develop an algorithm aimed at simulating the azimuthal cutoff wavelength in TCs,including wind,wave,and incidence angle.This method yields an RMSE of 8.90 m,a COR of 0.91,and a scatter index of 0.04 for VV-polar-ization SAR.
基金supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Xizang,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金Financial support for this work from the U.S.Department of Energy(DOE)Office of Basic Energy Sciences for“Center for Coupled Chemo-Mechanics of Cementitious Composites for EGS(C4M)”,DOE’s“National Risk Assessment Partnership(NRAP)”programDOE Office of Energy Efficiency&Renewable Energy’s Geothermal Technologies Office for“Advanced Downhole Acoustic Sensing for Wellbore Integrity”is gratefully acknowledged.
文摘Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks.
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金funding provided by the State Nuclear Waste Management Fund(VYR)and the support of the Ministry of Economic Affairs and Employment of Finland on the Finnish Research Program on Nuclear Waste Management KYT2018 and KYT2022 of the Nuclear Energy Act(990/1987)in the research projects Fluid flow in fractured hard rock mass(RAKKA),funding numbers KYT 1/2021 and KYT 1/2022Additional support was received from the National Nuclear Safety and Waste Management Research Program SAFER2028,funding numbers SAFER 25/2023(MIRKA)and SAFER 42/2023(CORF).
文摘Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm.
基金supported in part by the National Science Fund for Excellent Young Scholars(No.62222113)in part by the joint Funds of the National Natural Science Foundation of China(No.U22B2015)+1 种基金in part by the stabilization support of National Radar Signal Processing Laboratory(No.KGJ202203)in part by the Fundamental Research Funds for the Central Universities(No.ZDRC2004).
文摘Obtaining precise position of interested emitters passively has wide applications in both civilian and military fields.Different from traditional parameter measurement and direct position determination(DPD)method,recently a new passive localization method based on synthetic aper-ture technique,named synthetic aperture positioning(SAP),has been proposed.The method com-pensates for the nonlinear phase produced by relative motion between the moving platform and the emitter,achieving coherent summation of intercepted signals.The SAP can obtain high-resolution and high-precision localization results at a low signal-to-noise ratio.This paper summarizes the research progress of SAP,including localization principles,spaceborne applications,and application scope analysis.Besides,the possible future outlook of SAP is considered.
基金supported in part by the National Science Fund for Excel-lent Young Scholars(No.62222113)in part by the joint Funds of the National Natural Science Foundation of China(No.U22B2015)+1 种基金in part by the stabilization support of National Radar Signal Processing Laboratory(No.KGJ202203)in part by the Fundamental Research Funds for the Central Universities(No.ZDRC2004).
文摘The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).
基金supported by the National Natural Science Foundation of China (U2031210 and 11827804)Science Research from the China Manned Space Project (CMS-CSST-2021-A11 and CMS-CSST-2021-B04).
文摘The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.
基金supported by the National Natural Science Foundation of China[Grant 42076238 and 42376174]the Natural Science Foundation of Shanghai[Grant 23ZR1426900]and Science Foundation of Donghai Laboratory[Grant DH-2022KF01019].
文摘The purpose of our work is to analyze the effect of wave breaking on dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))synthetic aperture radar(SAR)image in the C-band during tropical cyclones(TCs)based on the machine learning method.In this study,more than 1300 Sentinel-1(S-1)interferometric-wide(IW)and extra wide(EW)mode SAR images are collocated with wave simulations from the WAVEWATCH-III(WW3)model during 400 TCs.The validation of the significant wave height(SWH)simulated using the WW3 model against Jason-2 altimeter data.The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization.The non-polarized(NP)contributionσ_(wb)caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section(NRCS)σ_(0)minus the Bragg resonant roughnessσbr without the distortion of rain cells during TCs.Theσbr is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model.It is found that the ratio(σ_(wb)/σ_(0))in VV polarization is related to the wind speed,the wind direction relative with the flight orientation,and radar incidence angle.Following this rationale,the Adaptive Boosting(AdaBoost)model was used for the estimation of NP contributionσ_(wb)during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model.It is found that for the comparison between the sum of simulation NRCS and SAR observations,the root mean squared error(RMSE)is 1.95 dB and the coefficient(COR)is 0.86,which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model.It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.
文摘Managing server lost circulation is a major challenge of drilling operation in naturally fractured formations and it causes much nonproductive rig time. When encountered with loss, the fracture aperture intersecting the wellbore is not well-identified in time, which has a significant impact on the decision of drilling operation and the undesired result of loss curing. Therefore, the onset of fracture is identified in a timely manner and evaluated comprehensively to formulate an appropriate strategy over time. However, the mud loss date, which is the primary source of information retrieved from the drilling process, was not properly used in real-time prediction of fracture aperture. This article provides a detailed mathematical study to discuss the mechanism of mud invasion in the near-wellbore region and prediction of fracture aperture. The fracture aperture can be calculated from mud-loss data by solving a cubic equation with input parameters given by the well radius, the overpressure ratio, and the maximum mud-loss volume. It permits the proper selection of loss-circulation material (LCM) with respect to particle size distribution and fiber usage. The case study illustrates the applicability of this methodology with a discussion on LCM particle distribution in different scenarios and the result demonstrates the outcome of inappropriate LCM usage and the advantages of the novel fiber-based LCM treatment.
基金Supported by the National Natural Science Foundation of China(61071165)the Program for NewCentury Excellent Talents in University(NCET-09-0069)the Defense Industrial Technology Development Program(B2520110008)~~
文摘As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.
基金supported by the Major National Project Program (No.2011ZX05007-006)
文摘We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson's theory. Six crack models were embedded with equal-radius penny-shaped crack inclusions in each layer. The P-wave velocity and amplitude were measured parallel and perpendicular to the layers of cracks at frequencies of 0.1 MHz to 1 MHz. The experiments show that as the crack aperture increases from 0.l mm to 0.34 mm, the amplitude of the P-waves parallel to the crack layers decreases linearly with increasing frequency and the P-wave velocity dispersion varies from 1.5% to 2.1%, whereas the amplitude of the P-wave perpendicular to the crack layers decreases quadratically with increasing frequency and the velocity dispersion varies from 1.9% to 4.7%. The variation in the velocity dispersion parallel and perpendicular to the cracks intensifies the anisotropy dispersion of the P-waves in the crack models (6.7% to 83%). The P-wave dispersion strongly depends on the scattering characteristics of the crack apertures.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.