期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于APDFinformer模型的金融数据的多元时序预测
被引量:
1
1
作者
朱晓彤
林培光
+1 位作者
孙玫
崔超然
《南京大学学报(自然科学版)》
CSCD
北大核心
2024年第6期930-939,共10页
最近,多元时间序列(Multivariate Time Series,MTS)预测逐渐走入人们的视野,特别是许多基于Transformer的模型已经显示出巨大的潜力,然而,现有的基于Transformer的模型主要关注跨时间依赖性的建模,往往忽略了不同变量之间的依赖性,但这...
最近,多元时间序列(Multivariate Time Series,MTS)预测逐渐走入人们的视野,特别是许多基于Transformer的模型已经显示出巨大的潜力,然而,现有的基于Transformer的模型主要关注跨时间依赖性的建模,往往忽略了不同变量之间的依赖性,但这对MTS预测至关重要.基于此,提出一种新型的多元时间序列预测模型APDFinformer,旨在应对金融市场复杂多变的特性.该模型结合了自适应多尺度标识器(Adaptive Multi-Scale Identifier,AMSI),能够提取时间序列在不同尺度上的信息,帮助模型降低噪声对时间序列的影响,并捕获不同尺度之间的交互作用.其次,对处理完成的多元时序数据,利用Decomposition方法分解为趋势项和季节项,其中,对趋势项信息进行简单的线性处理,对季节项数据则根据PatchTST思想进行切块来缩短序列长度以表征局部特征,使其保留局部语义信息,有利于模型分析时间步之间的关联.实验结果显示,和传统方法以及类Transformer的各种模型相比,APDFinformer能够更准确地捕捉金融市场的复杂动态,预测精度更高.具体地,在三个加密货币数据集上,和Transformer模型相比,APDFinformer模型的MSE(Mean Square Error)降低了54%,24%和60%,MAE(Mean Absolute Error)降低了39%,22%和44%,证明APDFinformer在金融领域多元时序预测方面是更可靠的预测工具,也为基于Transformer模型的其他应用领域提供了有益的启示,以满足不断变化的金融市场需求.
展开更多
关键词
apdfinformer
多元时序预测
金融数据
PatchTST
AMSI
在线阅读
下载PDF
职称材料
题名
基于APDFinformer模型的金融数据的多元时序预测
被引量:
1
1
作者
朱晓彤
林培光
孙玫
崔超然
机构
山东财经大学计算机科学与技术学院
山东财经大学财政税务学院
出处
《南京大学学报(自然科学版)》
CSCD
北大核心
2024年第6期930-939,共10页
基金
国家自然科学基金(61802230)
文摘
最近,多元时间序列(Multivariate Time Series,MTS)预测逐渐走入人们的视野,特别是许多基于Transformer的模型已经显示出巨大的潜力,然而,现有的基于Transformer的模型主要关注跨时间依赖性的建模,往往忽略了不同变量之间的依赖性,但这对MTS预测至关重要.基于此,提出一种新型的多元时间序列预测模型APDFinformer,旨在应对金融市场复杂多变的特性.该模型结合了自适应多尺度标识器(Adaptive Multi-Scale Identifier,AMSI),能够提取时间序列在不同尺度上的信息,帮助模型降低噪声对时间序列的影响,并捕获不同尺度之间的交互作用.其次,对处理完成的多元时序数据,利用Decomposition方法分解为趋势项和季节项,其中,对趋势项信息进行简单的线性处理,对季节项数据则根据PatchTST思想进行切块来缩短序列长度以表征局部特征,使其保留局部语义信息,有利于模型分析时间步之间的关联.实验结果显示,和传统方法以及类Transformer的各种模型相比,APDFinformer能够更准确地捕捉金融市场的复杂动态,预测精度更高.具体地,在三个加密货币数据集上,和Transformer模型相比,APDFinformer模型的MSE(Mean Square Error)降低了54%,24%和60%,MAE(Mean Absolute Error)降低了39%,22%和44%,证明APDFinformer在金融领域多元时序预测方面是更可靠的预测工具,也为基于Transformer模型的其他应用领域提供了有益的启示,以满足不断变化的金融市场需求.
关键词
apdfinformer
多元时序预测
金融数据
PatchTST
AMSI
Keywords
apdfinformer
multivariate time series forecasting
financial data
PatchTST
AMSI
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于APDFinformer模型的金融数据的多元时序预测
朱晓彤
林培光
孙玫
崔超然
《南京大学学报(自然科学版)》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部