Eight dissolution models of calcium apatites(both fluorapatite and hydroxyapatite) in acids were drawn from the published literature,analyzed and discussed.Major limitations and drawbacks of the models were conversed ...Eight dissolution models of calcium apatites(both fluorapatite and hydroxyapatite) in acids were drawn from the published literature,analyzed and discussed.Major limitations and drawbacks of the models were conversed in details.The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general.Therefore,an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids.For this purpose,eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution.The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future.This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data,obtained by various research groups under dissimilar experimental conditions.展开更多
1 Introduction Studies of marine sedimentary phosphate rock have lasted decades,scholars proposed some standpoints about mineralization,however,the genesis of mineral deposits remains to be a controversial question(Sh...1 Introduction Studies of marine sedimentary phosphate rock have lasted decades,scholars proposed some standpoints about mineralization,however,the genesis of mineral deposits remains to be a controversial question(She et al.,2013).There are many viewpoints of mineralization about the Doushantuo phosphorites,Central Guizhou,including biological mineralization(Mi et al.,2010;Shi et al.,2005),展开更多
Apatites occurring in sedimentary rocks are carbonate fluorapatites (C-F apatites) with differentCO_2 contents. During diagenesis. the CO_2 in the C-F apatites gradually decreased with the increasing strengthof diagen...Apatites occurring in sedimentary rocks are carbonate fluorapatites (C-F apatites) with differentCO_2 contents. During diagenesis. the CO_2 in the C-F apatites gradually decreased with the increasing strengthof diagenesis. resulting in the systematic changes in refractive index. specific gravity, cell parameters and crystalchemistry of apatites. On the basis of X-ray diffraction and IR spectroscopic analyses, the author proposes twoparameters for determining diagenetic stages. i.e.. the crystallinity index (CR) and sharpness index (SH). Thesetwo parameters serve as new criteria for the determination. which due to the common existence of phosphorousnodules and bands and argillo-crystalline cement in sedimentary rocks, most likely have wide prospects for ap-plication.展开更多
The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is si...The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic.展开更多
The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investi...The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.展开更多
Detrital zircon and apatite U-Pb-Hf isotope and trace element analyses of the late Mesoproterozoic to early Neoproterozoic strata in southern Jilin provide detailed information on the sediment provenance and tectonic ...Detrital zircon and apatite U-Pb-Hf isotope and trace element analyses of the late Mesoproterozoic to early Neoproterozoic strata in southern Jilin provide detailed information on the sediment provenance and tectonic setting of the northeastern margin of the North China Craton(NCC).Here,we present U-Pb and Lu-Hf analyses of 712 detrital zircons,and U-Pb analyses of 347 detrital apatites from the Baifangzi,Diaoyutai and Qiaotou formations.The Baifangzi and Diaoyutai formations are dominated by Neoarchean(2.5-2.6 Ga)and Paleoproterozoic(1.8-1.9 Ga)zircons,indicating a predominant NCC provenance.The Qiaotou Formation is dominated by Mesoproterozoic(1.5-1.7 Ga and 1.1-1.3 Ga)zircons with mainly positiveεHf(t)values,which are similar to those from eastern Laurentia,implying a significant provenance transition.The detrital apatite age spectra of the Baifangzi and Diaoyutai Formations show major populations at 1.8-1.9 Ga and 1.1-1.3 Ga.Based on their trace element compositions,the Mesoproterozoic apatites were mainly sourced from metamorphic rocks,indicating regional metamorphism occurred in the NCC during 1.1-1.3 Ga.Combining these data with regional studies,we propose that the NCC was adjacent to eastern Laurentia during the assembly of the Rodinia supercontinent.展开更多
A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on thi...A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on this set of intrusive rock assemblages.U-Pb dating of apatite shows that the lherzolite formed at 492±5 Ma,the granite at 473±6 Ma,and the diabase at 260±14 Ma,respectively.The lherzolites belong to a supra-subduction zone type(SSZ-type)ophiolite component above a subduction zone;the granites formed in an ocean-continent subduction setting;and the diabases represent products of partial melting of an asthenospheric mantle at shallow depth.The East Kunlun orogenic belt features the East Kunzhong and Buqingshan-Animaqing ophiolitic mélange belts,with the latter representing remnants of the Proto-Tethys Ocean.The Late Cambrian lherzolites and granites in the Longshenggeng area were magmatic products of the back-arc ocean basin and island arc formed during the northward subduction of the Proto-Tethys Ocean.Subsequently,extensive island arc magmatism occurred from the Late Permian to Middle Triassic,driven by the northward subduction of the Paleo-Tethys Ocean beneath the East Kunlun Block.The diabase may have formed during the transition from subduction to post-collisional extension.展开更多
Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinne...Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes.Although the main fac-tors controlling the development of passive-roof duplexes have mostly been identified,some of their intrinsic characteristics are still poorly defined.These relate to their spatio-temporal relationships to thrust faults located further inland in orogens,and their ability to transport younger rocks over older ones.This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines,which expose regional forethrusts and backthrusts.Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the tim-ing of rock exhumation and correlated tectonic events.Collectively,the results have allowed us to inter-pret the evolution of the study area in terms of two main deformation stages.Specifically,a first,long phase(D_(1))progressed from NE-directed,in-sequence thrusting(∼18 to∼10-9 Ma)to late out-of-sequence thrusting(∼8-5 Ma).A successive deformation phase,that we refer to as D_(2)(∼4-2 Ma),con-sisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D_(1)structures.Such retrovergent structures identify a late deformation phase dom-inated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge.Orogen-scale processes controlled the evolution of forelandward D_(1)-phase thrusts,although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state.The latter conditions could have contributed to keeping the out-of-sequence thrusts active,and eventually promoted the development of the D_(2)passive-roof duplexes.展开更多
The temporal and spatial evolution of the Ailao Shan-Red River(ASRR)fault zone,which serves as an important accommodation zone for the extrusion and escape of the Southeastern Tibetan Plateau,is crucial for analyzing ...The temporal and spatial evolution of the Ailao Shan-Red River(ASRR)fault zone,which serves as an important accommodation zone for the extrusion and escape of the Southeastern Tibetan Plateau,is crucial for analyzing the uplift and growth of the plateau.Based on the petrology and apatite fission track analysis,the tectonic history and active pattern of the ASRR fault zone since the middle Miocene are determined in this study.The ASRR fault zone exhibits 12-8Ma and 8-4 Ma rapid cooling phases since the middle Miocene.The 12-8 Ma and 8-4 Ma cooling may imply that the dextral movement of the ASRR fault zone presents a migration trend from northwest to southeast,accompanied by the weakening of the activity intensity,which is directly related to deformation processes,including extrusion boundary migration and active tectonic movements of the southeastern Tibetan Plateau,since the middle-late Miocene.展开更多
Fluorine(F)-enriched soils,resulting from geogenic processes or superimposed by anthropogenic activities,have raised significant concerns due to their phytotoxicity and potential threats to human health.Soils in centr...Fluorine(F)-enriched soils,resulting from geogenic processes or superimposed by anthropogenic activities,have raised significant concerns due to their phytotoxicity and potential threats to human health.Soils in central Guizhou Province exhibit F enrichment,with a mean F concentration of 1067 mg/kg.However,the associated human health risks and geochemical mechanisms driving F enrichment in these soils remain insufficiently understood.In areas with a natural geological background,the average concentrations of F in rice,vegetables,drinking water,and ambient air are 1.54 mg/kg,0.54 mg/kg,0.16 mg/L,and 0.29μg/m^(3),respectively.In contrast,samples collected near phosphorous chemical plants demonstrate elevated F concentrations:1.78 mg/kg in rice,1.53 mg/kg in vegetables,0.20 mg/L in drinking water,and 11.98μg/m^(3) in ambient air.Fluorine in soils was immobilized by apatite and clay minerals,and hardly transferred into water and crops.The fixation of F-by Ca^(2+)in water and by Fe/Al hydroxides and clay minerals in bottom sediment further reduces F concentrations in water.As a result,hazard quotient(HQ)values below 1.0 indicate negligible fluorine-related health risk in geological background regions.However,ambient air near phosphorous chemical plant exhibited a 41.3-fold increase in F concentration compared to geological background regions.Fluorine-laden emissions can be directly inhaled or deposited on vegetable leaves and orally ingested into human bodies.Improvement of F-rich waste gas disposal and restricted leafy vegetable cultivation are effective measures to reduce F health risks in phosphorous chemical plant regions.展开更多
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat...Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.展开更多
The Daqing Shan(DQS)located in the Yinshan-Yanshan Orogenic Belt plays an important role in the Mesozoic to Cenozoic evolution of the North China Craton.However,the cooling and exhumation history since the Cretaceous ...The Daqing Shan(DQS)located in the Yinshan-Yanshan Orogenic Belt plays an important role in the Mesozoic to Cenozoic evolution of the North China Craton.However,the cooling and exhumation history since the Cretaceous is still controversial.Integrating the apatite fission track(AFT)data in both this study and previous works,a three-stage exhumation history from Cretaceous to Neogene of the DQS is proposed.(1)The first stage is composed of the early exhumation during Early Cretaceous driven by the collision between the North China and Siberia cratons(ca.148-132 Ma)and the far-field effect of the subduction of the Pacific Plate(ca.132-114 Ma).(2)Due to the subsidence of the Hetao Basin and the subsequent compensation between the DQS and the Hetao Basin,the DQS experienced the second rapid exhumation from Early Eocene to Early Oligocene(ca.54-29 Ma).(3)Since the Late Miocene(ca.13.5 Ma),the third rapid cooling and exhumation of the DQS occurred due to the far-field effect of the uplift of the Tibetan Plateau and the subduction of the Pacific Plate.展开更多
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Xizang,China,exemplifies a typical porphyry metallogenic system.However,the mineral chem...The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Xizang,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2)content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.展开更多
Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reac...Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate.We examined the exhumation history of the Huangling Massif based on six granite bedrock samples,using apatite fission track(AFT)and apatite and zircon(U-Th)/He(AHe and ZHe)thermochronology.These samples yielded ages of 157–132 Ma(ZHe),119–106 Ma(AFT),and 114–72 Ma(AHe),respectively.Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous,late Early Cretaceous,and Late Cretaceous.These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif.The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous.At that time,the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin.The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.展开更多
Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track...Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.展开更多
The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on...The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on MA8 magnesium alloy.The obtained coatings demonstrate in vivo biocompatibility and in vitro bioactivity.Compared to the base PEO coating,the layers containing Ta_(2)O_(5)facilitate the development of apatite in simulated body fluid,suggesting that the inclusion of nanoparticles improves bioactivity of the coatings.It was found that incorporation of Ta_(2)O_(5)nanoparticles increases roughness and porosity of the formed layers by increasing particle concentration in electrolytes for the PEO process contributing to sufficient soft tissue ingrowth in vivo.Based on in vivo studies,these coatings also provide favorable tissue response and minimal inflammatory reaction in comparison with the bare magnesium alloy due to protection of living tissues from deleterious corrosion events of magnesium implant such as local alkalization and intense hydrogen evolution.The results obtained in the present study concluded biocompatibility,tissue integration of the PEO coatings containing Ta_(2)O_(5)nanoparticles making them a promising protective layer for biodegradable magnesium implants.展开更多
Reconstructing the thermal evolution of the eastern Qaidam Basin is important for gaining a deeper understanding of its lithospheric geodynamics and for more accurate hydrocarbon evaluation and prediction.This article...Reconstructing the thermal evolution of the eastern Qaidam Basin is important for gaining a deeper understanding of its lithospheric geodynamics and for more accurate hydrocarbon evaluation and prediction.This article presents a set of new apatite and zircon(U-Th)/He thermochronological ages.Combined with 336 vitrinite reflectance(R_(o))data,the thermal history of the Ouanan Sag in the eastern Qaidam Basin has been reconstructed using inversion models.Three detrital samples from the Ounan Sag shows that the apatite(U-Th)/He ages are primarily concentrated in the range of 17.0 Ma to 76.5 Ma and that the zircon(U-Th)/He ages range from 200 Ma to 289.3 Ma.The time-temperature models demonstrate that the Ounan Sag experienced rapid subsidence and heating from the Carboniferous to late Permian,and exhumation/cooling events from the end of Permian to the Triassic.This thermal evolution was influenced by the widespread intrusion of plutons,and the collision and orogenesis caused by asthenosphere upwelling below the Qaidam arc,and slab rollback of the Southern Kunlun oceanic lithosphere,respectively.Additionally,our models depict the main exhumation/cooling stages since the Paleogene and a reheating event in the Miocene as a result of the intensifying growth of the Qinghai-Tibet Plateau and local sedimentary loading,followed by the initial India-Eurasia collision.Furthermore,the eastern Qaidam Basin experienced consistent heating during the late Paleozoic,reaching the maximum paleotemperature and geothermal gradient in the late Permian,with values of~230℃and~43-44℃/km,respectively.This study suggests that the source rocks in the most upper member of upper Carboniferous Keluke(C_(2)k)Formations in the Ounan Sag reached the gas generation stage in the late Permian.展开更多
Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Xizang,charac...Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Xizang,characterized by two distinct lithologic units:The Gangdese batholith to the north(mainly granitoids)and the Tethyan Himalaya(mainly sedimentary rocks)to the south,which plays a crucial role in the erosion of the Tibetan Plateau.To constrain the provenance of the Yarlung River Basin,we performed trace-element and U-Pb age analyses of detrital apatite from the river sands of the Yarlung River and its tributaries.Our findings indicate that the detrital apatite U-Pb age patterns of the north tributaries exhibit main peaks at approximately 40 and 60 Ma,consistent with the corresponding U-Pb age patterns of detrital zircon published.Further,their trace element casts fall mainly in the Type I granite region,also indicating the Gangdese arc-dominated source.However,those of the south tributaries(∼60–20 Ma)exhibit a different age distribution from the detrital zircon U-Pb groups(∼110–150,∼500,and 1100 Ma),suggesting that the detailed apatite U-Pb signals can provide excellent constraints on the provenance of igneous and metamorphic rock sources but less so for sedimentary rock sources.Combined with previous detrital zircon data in the study area,our detrital apatite information can highlight young metamorphic events from a complex background(i.e.,Niyang and Nianchu rivers),which offers additional constraints on the provenance of the Yarlung River Basin.Generally,a combination of geochemistry and geochronology of multi-detrital heavy minerals,such as zircon and apatite,can provide powerful tools for provenance analysis.展开更多
The Mesozoic intrusions of the Jiaodong Peninsula,eastern China,host giant gold deposits.Understanding the genesis of these deposits requires the determination of the source of the parental auriferous fluid and the ti...The Mesozoic intrusions of the Jiaodong Peninsula,eastern China,host giant gold deposits.Understanding the genesis of these deposits requires the determination of the source of the parental auriferous fluid and the timing of gold mineralization,which are strongly influenced by the cooling/uplift histories of the hosting intrusions.We performed an integrated U-Pb geochronology study on both zircon and apatite from four major magmatic episodes of the Jiaodong Peninsula.The zircon and apatite U-Pb ages are 156.9±1.2 and 137.2±2.4 Ma for the Linglong intrusion,129.9±1.0 and 125.0±3.8 Ma for the Qujia intrusion,119.5±0.7 and 117.2±1.8 Ma for the Liulinzhuang intrusion,118.6±1.0 and 111.6±1.6 Ma for the Nansu intrusion,respectively.The coupled zircon and apatite data of these granitoids indicate a slow cooling rate(11.9°C/Ma)in the Late Jurassic,and rapid uplift and cooling(35.8-29.2°C/Ma)in the Early Cretaceous.The dramatically increased uplift and cooling period in the Early Cretaceous are contemporaneous with large-scale gold mineralization in the Jiaodong Peninsula.This implies that thermal upwelling of asthenosphere and related tectonic extension played an important role in gold remobilization and precipitation.展开更多
The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassi...The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.展开更多
文摘Eight dissolution models of calcium apatites(both fluorapatite and hydroxyapatite) in acids were drawn from the published literature,analyzed and discussed.Major limitations and drawbacks of the models were conversed in details.The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general.Therefore,an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids.For this purpose,eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution.The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future.This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data,obtained by various research groups under dissimilar experimental conditions.
文摘1 Introduction Studies of marine sedimentary phosphate rock have lasted decades,scholars proposed some standpoints about mineralization,however,the genesis of mineral deposits remains to be a controversial question(She et al.,2013).There are many viewpoints of mineralization about the Doushantuo phosphorites,Central Guizhou,including biological mineralization(Mi et al.,2010;Shi et al.,2005),
文摘Apatites occurring in sedimentary rocks are carbonate fluorapatites (C-F apatites) with differentCO_2 contents. During diagenesis. the CO_2 in the C-F apatites gradually decreased with the increasing strengthof diagenesis. resulting in the systematic changes in refractive index. specific gravity, cell parameters and crystalchemistry of apatites. On the basis of X-ray diffraction and IR spectroscopic analyses, the author proposes twoparameters for determining diagenetic stages. i.e.. the crystallinity index (CR) and sharpness index (SH). Thesetwo parameters serve as new criteria for the determination. which due to the common existence of phosphorousnodules and bands and argillo-crystalline cement in sedimentary rocks, most likely have wide prospects for ap-plication.
基金This study was jointly supported by the Science&Technology Fundamental Resources Investigation Program(2022FY101800)National Science Foundation(92162212)+1 种基金the project from the Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences,Wuhan)(TPR-2022-22)the International Geoscience Programme(IGCP-675)。
文摘The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic.
基金financially supported by CAMM(Center of Advanced Mining and Metallurgy/Green Flotation),as a center of excellence at the Luleå University of Technology.
文摘The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.
基金financially supported by the National Natural Science Foundation of China(Grant No.41902224,41602209).
文摘Detrital zircon and apatite U-Pb-Hf isotope and trace element analyses of the late Mesoproterozoic to early Neoproterozoic strata in southern Jilin provide detailed information on the sediment provenance and tectonic setting of the northeastern margin of the North China Craton(NCC).Here,we present U-Pb and Lu-Hf analyses of 712 detrital zircons,and U-Pb analyses of 347 detrital apatites from the Baifangzi,Diaoyutai and Qiaotou formations.The Baifangzi and Diaoyutai formations are dominated by Neoarchean(2.5-2.6 Ga)and Paleoproterozoic(1.8-1.9 Ga)zircons,indicating a predominant NCC provenance.The Qiaotou Formation is dominated by Mesoproterozoic(1.5-1.7 Ga and 1.1-1.3 Ga)zircons with mainly positiveεHf(t)values,which are similar to those from eastern Laurentia,implying a significant provenance transition.The detrital apatite age spectra of the Baifangzi and Diaoyutai Formations show major populations at 1.8-1.9 Ga and 1.1-1.3 Ga.Based on their trace element compositions,the Mesoproterozoic apatites were mainly sourced from metamorphic rocks,indicating regional metamorphism occurred in the NCC during 1.1-1.3 Ga.Combining these data with regional studies,we propose that the NCC was adjacent to eastern Laurentia during the assembly of the Rodinia supercontinent.
基金supported by the Qinghai Provincial Special Fund for Geological Exploration-Deep Mineral Exploration Breakthrough Demonstration Project in Key Ore Concentration Areas of Qinghai Province(No.2023085029ky004)New Round of National Strategic Action for Mineral Exploration Breakthrough-Research and Demonstration of Air-Ground Collaborative Efficient Technologies for Copper-Nickel Sulfide Deposits in the East Kunlun Plateau Desert Region(No.ZKKJ202416)+1 种基金National Key R&D Program of China-Novel Geochemical Exploration Technologies for Desert Gobi and Alpine Grassland Shallow Overburden Terrains(No.2024ZD1002403)Kunlun Talent Program of Qinghai Province jointly support。
文摘A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on this set of intrusive rock assemblages.U-Pb dating of apatite shows that the lherzolite formed at 492±5 Ma,the granite at 473±6 Ma,and the diabase at 260±14 Ma,respectively.The lherzolites belong to a supra-subduction zone type(SSZ-type)ophiolite component above a subduction zone;the granites formed in an ocean-continent subduction setting;and the diabases represent products of partial melting of an asthenospheric mantle at shallow depth.The East Kunlun orogenic belt features the East Kunzhong and Buqingshan-Animaqing ophiolitic mélange belts,with the latter representing remnants of the Proto-Tethys Ocean.The Late Cambrian lherzolites and granites in the Longshenggeng area were magmatic products of the back-arc ocean basin and island arc formed during the northward subduction of the Proto-Tethys Ocean.Subsequently,extensive island arc magmatism occurred from the Late Permian to Middle Triassic,driven by the northward subduction of the Paleo-Tethys Ocean beneath the East Kunlun Block.The diabase may have formed during the transition from subduction to post-collisional extension.
文摘Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes.Although the main fac-tors controlling the development of passive-roof duplexes have mostly been identified,some of their intrinsic characteristics are still poorly defined.These relate to their spatio-temporal relationships to thrust faults located further inland in orogens,and their ability to transport younger rocks over older ones.This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines,which expose regional forethrusts and backthrusts.Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the tim-ing of rock exhumation and correlated tectonic events.Collectively,the results have allowed us to inter-pret the evolution of the study area in terms of two main deformation stages.Specifically,a first,long phase(D_(1))progressed from NE-directed,in-sequence thrusting(∼18 to∼10-9 Ma)to late out-of-sequence thrusting(∼8-5 Ma).A successive deformation phase,that we refer to as D_(2)(∼4-2 Ma),con-sisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D_(1)structures.Such retrovergent structures identify a late deformation phase dom-inated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge.Orogen-scale processes controlled the evolution of forelandward D_(1)-phase thrusts,although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state.The latter conditions could have contributed to keeping the out-of-sequence thrusts active,and eventually promoted the development of the D_(2)passive-roof duplexes.
基金supported by the National Natural Science Foundation of China(Grant Nos.41530963,42406077)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2022QD087)the National Natural Science Foundation of China(Grant Nos.42376060,41176038)。
文摘The temporal and spatial evolution of the Ailao Shan-Red River(ASRR)fault zone,which serves as an important accommodation zone for the extrusion and escape of the Southeastern Tibetan Plateau,is crucial for analyzing the uplift and growth of the plateau.Based on the petrology and apatite fission track analysis,the tectonic history and active pattern of the ASRR fault zone since the middle Miocene are determined in this study.The ASRR fault zone exhibits 12-8Ma and 8-4 Ma rapid cooling phases since the middle Miocene.The 12-8 Ma and 8-4 Ma cooling may imply that the dextral movement of the ASRR fault zone presents a migration trend from northwest to southeast,accompanied by the weakening of the activity intensity,which is directly related to deformation processes,including extrusion boundary migration and active tectonic movements of the southeastern Tibetan Plateau,since the middle-late Miocene.
基金supported by the projects of the China Geological Survey(DD20230543,DD20221770).
文摘Fluorine(F)-enriched soils,resulting from geogenic processes or superimposed by anthropogenic activities,have raised significant concerns due to their phytotoxicity and potential threats to human health.Soils in central Guizhou Province exhibit F enrichment,with a mean F concentration of 1067 mg/kg.However,the associated human health risks and geochemical mechanisms driving F enrichment in these soils remain insufficiently understood.In areas with a natural geological background,the average concentrations of F in rice,vegetables,drinking water,and ambient air are 1.54 mg/kg,0.54 mg/kg,0.16 mg/L,and 0.29μg/m^(3),respectively.In contrast,samples collected near phosphorous chemical plants demonstrate elevated F concentrations:1.78 mg/kg in rice,1.53 mg/kg in vegetables,0.20 mg/L in drinking water,and 11.98μg/m^(3) in ambient air.Fluorine in soils was immobilized by apatite and clay minerals,and hardly transferred into water and crops.The fixation of F-by Ca^(2+)in water and by Fe/Al hydroxides and clay minerals in bottom sediment further reduces F concentrations in water.As a result,hazard quotient(HQ)values below 1.0 indicate negligible fluorine-related health risk in geological background regions.However,ambient air near phosphorous chemical plant exhibited a 41.3-fold increase in F concentration compared to geological background regions.Fluorine-laden emissions can be directly inhaled or deposited on vegetable leaves and orally ingested into human bodies.Improvement of F-rich waste gas disposal and restricted leafy vegetable cultivation are effective measures to reduce F health risks in phosphorous chemical plant regions.
基金supported by National Natural Science Foundation of China(Grant Nos.42025301,41730213 and 41890831)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0702)+2 种基金Hong Kong RGC GRF(Grant No.17307918)HKU Internal Grants for Member of Chinese Academy of Sciences(Grant No.102009906)for Distinguished Research Achievement Award(Grant No.102010100)。
文摘Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.
基金supported by the Major National Science and Technology Projects of China(No.2016ZX05034001-006)the National Natural Science Foundation of China(Nos.42072132,41202104,and 41572131)the China Geological Survey Projects(Nos.DD20190103 and DD20190711)。
文摘The Daqing Shan(DQS)located in the Yinshan-Yanshan Orogenic Belt plays an important role in the Mesozoic to Cenozoic evolution of the North China Craton.However,the cooling and exhumation history since the Cretaceous is still controversial.Integrating the apatite fission track(AFT)data in both this study and previous works,a three-stage exhumation history from Cretaceous to Neogene of the DQS is proposed.(1)The first stage is composed of the early exhumation during Early Cretaceous driven by the collision between the North China and Siberia cratons(ca.148-132 Ma)and the far-field effect of the subduction of the Pacific Plate(ca.132-114 Ma).(2)Due to the subsidence of the Hetao Basin and the subsequent compensation between the DQS and the Hetao Basin,the DQS experienced the second rapid exhumation from Early Eocene to Early Oligocene(ca.54-29 Ma).(3)Since the Late Miocene(ca.13.5 Ma),the third rapid cooling and exhumation of the DQS occurred due to the far-field effect of the uplift of the Tibetan Plateau and the subduction of the Pacific Plate.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)a geological survey project(Grant No.DD20230054).
文摘The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Xizang,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2)content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41671011,41871019,41877292,41972212)Research Foundation of Chutian Scholars Program of Hubei Province(Grant No.8210403)Shanxi Key Research and Development program:Feng Cheng(Grant No.2021SF2-03).
文摘Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate.We examined the exhumation history of the Huangling Massif based on six granite bedrock samples,using apatite fission track(AFT)and apatite and zircon(U-Th)/He(AHe and ZHe)thermochronology.These samples yielded ages of 157–132 Ma(ZHe),119–106 Ma(AFT),and 114–72 Ma(AHe),respectively.Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous,late Early Cretaceous,and Late Cretaceous.These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif.The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous.At that time,the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin.The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.
基金the Foundation of State Key Laboratory of Nuclear Resources and Environment(Grant Nos.NRE2021-01,2022NRE34)the National Natural Science Foundation of China(Grant No.42162013)+1 种基金the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1301)the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(Grant No.6142A01210405).
文摘Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.
基金The formation of coatings,as well as SEM,EDS,FTIR spectroscopy and mechanical studies was supported by Russian Science Foundation grant No.22-73-10149,https://rscf.ru/project/22-73-10149/The electrochemical studies,in vitro and in vivo studies was supported by the Russian Science Foundation grant No.23-13-00329,https://rscf.ru/project/23-13-00329/。
文摘The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on MA8 magnesium alloy.The obtained coatings demonstrate in vivo biocompatibility and in vitro bioactivity.Compared to the base PEO coating,the layers containing Ta_(2)O_(5)facilitate the development of apatite in simulated body fluid,suggesting that the inclusion of nanoparticles improves bioactivity of the coatings.It was found that incorporation of Ta_(2)O_(5)nanoparticles increases roughness and porosity of the formed layers by increasing particle concentration in electrolytes for the PEO process contributing to sufficient soft tissue ingrowth in vivo.Based on in vivo studies,these coatings also provide favorable tissue response and minimal inflammatory reaction in comparison with the bare magnesium alloy due to protection of living tissues from deleterious corrosion events of magnesium implant such as local alkalization and intense hydrogen evolution.The results obtained in the present study concluded biocompatibility,tissue integration of the PEO coatings containing Ta_(2)O_(5)nanoparticles making them a promising protective layer for biodegradable magnesium implants.
基金financially supported by grants from the Geological Survey Projects of China Geological Survey(grant nos.20242065,20230260)the Fundamental Research Fund of Chinese Academy of Geological Sciences(grant no.JKYQN202342)the National Natural Science Foundation of China(grant no.41772272)。
文摘Reconstructing the thermal evolution of the eastern Qaidam Basin is important for gaining a deeper understanding of its lithospheric geodynamics and for more accurate hydrocarbon evaluation and prediction.This article presents a set of new apatite and zircon(U-Th)/He thermochronological ages.Combined with 336 vitrinite reflectance(R_(o))data,the thermal history of the Ouanan Sag in the eastern Qaidam Basin has been reconstructed using inversion models.Three detrital samples from the Ounan Sag shows that the apatite(U-Th)/He ages are primarily concentrated in the range of 17.0 Ma to 76.5 Ma and that the zircon(U-Th)/He ages range from 200 Ma to 289.3 Ma.The time-temperature models demonstrate that the Ounan Sag experienced rapid subsidence and heating from the Carboniferous to late Permian,and exhumation/cooling events from the end of Permian to the Triassic.This thermal evolution was influenced by the widespread intrusion of plutons,and the collision and orogenesis caused by asthenosphere upwelling below the Qaidam arc,and slab rollback of the Southern Kunlun oceanic lithosphere,respectively.Additionally,our models depict the main exhumation/cooling stages since the Paleogene and a reheating event in the Miocene as a result of the intensifying growth of the Qinghai-Tibet Plateau and local sedimentary loading,followed by the initial India-Eurasia collision.Furthermore,the eastern Qaidam Basin experienced consistent heating during the late Paleozoic,reaching the maximum paleotemperature and geothermal gradient in the late Permian,with values of~230℃and~43-44℃/km,respectively.This study suggests that the source rocks in the most upper member of upper Carboniferous Keluke(C_(2)k)Formations in the Ounan Sag reached the gas generation stage in the late Permian.
基金supported financially by the National Natural Science Foundation of China(No.42272111)the Second Tibetan Plateau Scientific Expedition Program(Nos.2019QZKK0204,2019QZKK0205).
文摘Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Xizang,characterized by two distinct lithologic units:The Gangdese batholith to the north(mainly granitoids)and the Tethyan Himalaya(mainly sedimentary rocks)to the south,which plays a crucial role in the erosion of the Tibetan Plateau.To constrain the provenance of the Yarlung River Basin,we performed trace-element and U-Pb age analyses of detrital apatite from the river sands of the Yarlung River and its tributaries.Our findings indicate that the detrital apatite U-Pb age patterns of the north tributaries exhibit main peaks at approximately 40 and 60 Ma,consistent with the corresponding U-Pb age patterns of detrital zircon published.Further,their trace element casts fall mainly in the Type I granite region,also indicating the Gangdese arc-dominated source.However,those of the south tributaries(∼60–20 Ma)exhibit a different age distribution from the detrital zircon U-Pb groups(∼110–150,∼500,and 1100 Ma),suggesting that the detailed apatite U-Pb signals can provide excellent constraints on the provenance of igneous and metamorphic rock sources but less so for sedimentary rock sources.Combined with previous detrital zircon data in the study area,our detrital apatite information can highlight young metamorphic events from a complex background(i.e.,Niyang and Nianchu rivers),which offers additional constraints on the provenance of the Yarlung River Basin.Generally,a combination of geochemistry and geochronology of multi-detrital heavy minerals,such as zircon and apatite,can provide powerful tools for provenance analysis.
基金supported by the Talent Research Project of Hebei Province(No.HBQZYCXY010)the National Natural Science Foundation of China-Shandong Joint Fund Program entitled“Control Mechanisms of Faults on Deep Gold Deposits in Jiaodong Peninsula”(No.U2006201)+1 种基金Isotopic analyses at the University of Alberta were supported by an NSERC discovery grant to D.G.Pearsonsupported by the National Natural Science Foundation of China(No.42103024)China Postdoctoral Science Foundation(Nos.2020T130618 and 2020M682516).
文摘The Mesozoic intrusions of the Jiaodong Peninsula,eastern China,host giant gold deposits.Understanding the genesis of these deposits requires the determination of the source of the parental auriferous fluid and the timing of gold mineralization,which are strongly influenced by the cooling/uplift histories of the hosting intrusions.We performed an integrated U-Pb geochronology study on both zircon and apatite from four major magmatic episodes of the Jiaodong Peninsula.The zircon and apatite U-Pb ages are 156.9±1.2 and 137.2±2.4 Ma for the Linglong intrusion,129.9±1.0 and 125.0±3.8 Ma for the Qujia intrusion,119.5±0.7 and 117.2±1.8 Ma for the Liulinzhuang intrusion,118.6±1.0 and 111.6±1.6 Ma for the Nansu intrusion,respectively.The coupled zircon and apatite data of these granitoids indicate a slow cooling rate(11.9°C/Ma)in the Late Jurassic,and rapid uplift and cooling(35.8-29.2°C/Ma)in the Early Cretaceous.The dramatically increased uplift and cooling period in the Early Cretaceous are contemporaneous with large-scale gold mineralization in the Jiaodong Peninsula.This implies that thermal upwelling of asthenosphere and related tectonic extension played an important role in gold remobilization and precipitation.
基金supported by the National Natural Science Foundation Program of China(42102095,42362013,42363009)the Jiangxi Provincial Natural Science Foundation(20224BAB203036,20224BAB213040,20224ACB203008)the Open Research Fund Program of State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(2022NRE12).
文摘The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.