Background: Surgery is a traumatic process that may subject patients to physiological and psychological responses leading to pre and post-operative effects. Preoperative anxiety, if severe may be associated with sever...Background: Surgery is a traumatic process that may subject patients to physiological and psychological responses leading to pre and post-operative effects. Preoperative anxiety, if severe may be associated with several complications including cancellation of surgery, poor intra- and post-operative analgesic control, altered post-operative healing, and longer hospital stays to mention a few. Objective: The main purpose was to determine the prevalence and predictors of pre-operative anxiety among elective surgical patients and their hemodynamic changes in these patients in the Surgical department in MNH. Methodology: This was a prospective descriptive and analytical study performed at MNH which involved patients admitted for elective surgical procedures from June 2021 to February 2022. Information was gathered in a structured questionnaire along with APAIS scores. Results: 169 patients for elective surgery in General Surgery and Urology units were included in the study. Among them, 94 males and 74 females. The overall pre-operative anxiety was 11.8%, 80.5% had moderate to severe Information-Related anxiety, while 26% and 17.2% had moderate-to-severe surgery-related and anesthesia-related types of anxiety respectively. Conclusion: Pre-operative anxiety was comparatively lower in our settings as well no factor was found with a significant relation to pre-operative anxiety, hence further and broader evaluation is recommended to result in the assessment and management of patients before elective surgery.展开更多
The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aeroso...The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale.展开更多
Volcanic eruptions release large amounts of ash clouds and gas aerosols into the atmosphere,which can be simulated by air quality prediction models.However,the performance of these models remains unsatisfactory,even t...Volcanic eruptions release large amounts of ash clouds and gas aerosols into the atmosphere,which can be simulated by air quality prediction models.However,the performance of these models remains unsatisfactory,even though both relevant physics and chemistry are considered.Hence,exploring the approaches for improvement such as inclusion of data assimilation is significative.In this study,we depict the modeling of the volcanic ash dispersion from the Hunga Tonga–Hunga Ha’apai underwater volcano,which erupted in a series of large explosions in late December 2021 and early January 2022.On 15 January 2022,a particularly significant explosion sent a massive ash cloud high into the atmosphere.We used the inline Weather Research and Forecasting model coupled with chemistry(WRF-Chem)and incorporated meteorological data assimilation within the Flux Adjusting Surface Data Assimilation System(FASDAS).We compared three forecast scenarios:one with only meteorology and no chemistry(OMET),one with gas and aerosol chemistry and no assimilation(NODA),and one with both chemistry and assimilation(FASDAS).We found that FASDAS resulted in lower planetary boundary layer height(PBLH),downward surface shortwave flux,and 2-m temperature by up to 800 m,200 W m^(−2),and 6℃ on the land portion,respectively,while the opposite was observed near the eruption site.We validated the model against the observations and the results showed that FASDAS significantly enhanced the model performance in retrieving meteorological variables.However,the simulations also revealed significant biases in the concentration of volcanic ash around the ash clouds.Data from the Copernicus TROPOspheric Monitoring Instrument Sentinel-5 Precursor(TROPOMI-S5P)showed a westward trend of the total SO2 emissions.This work demonstrates the significant contribution of data assimilation to the results of operational air quality predictions during violent volcanic eruption events.展开更多
文摘Background: Surgery is a traumatic process that may subject patients to physiological and psychological responses leading to pre and post-operative effects. Preoperative anxiety, if severe may be associated with several complications including cancellation of surgery, poor intra- and post-operative analgesic control, altered post-operative healing, and longer hospital stays to mention a few. Objective: The main purpose was to determine the prevalence and predictors of pre-operative anxiety among elective surgical patients and their hemodynamic changes in these patients in the Surgical department in MNH. Methodology: This was a prospective descriptive and analytical study performed at MNH which involved patients admitted for elective surgical procedures from June 2021 to February 2022. Information was gathered in a structured questionnaire along with APAIS scores. Results: 169 patients for elective surgery in General Surgery and Urology units were included in the study. Among them, 94 males and 74 females. The overall pre-operative anxiety was 11.8%, 80.5% had moderate to severe Information-Related anxiety, while 26% and 17.2% had moderate-to-severe surgery-related and anesthesia-related types of anxiety respectively. Conclusion: Pre-operative anxiety was comparatively lower in our settings as well no factor was found with a significant relation to pre-operative anxiety, hence further and broader evaluation is recommended to result in the assessment and management of patients before elective surgery.
基金supported by the National Science Fund for Distinguished Young Scholars(41825011)the National Natural Science Foundation of China(42175153 and 42030608)the Basic Research Fund of Chinese Academy of Meteorological Sciences(2021Y001)。
文摘The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale.
基金Supported by the Research Supporting Project(PNURSP2024R503)of Princess Nourah Bint Abdulrahman University,Saudi Arabia.
文摘Volcanic eruptions release large amounts of ash clouds and gas aerosols into the atmosphere,which can be simulated by air quality prediction models.However,the performance of these models remains unsatisfactory,even though both relevant physics and chemistry are considered.Hence,exploring the approaches for improvement such as inclusion of data assimilation is significative.In this study,we depict the modeling of the volcanic ash dispersion from the Hunga Tonga–Hunga Ha’apai underwater volcano,which erupted in a series of large explosions in late December 2021 and early January 2022.On 15 January 2022,a particularly significant explosion sent a massive ash cloud high into the atmosphere.We used the inline Weather Research and Forecasting model coupled with chemistry(WRF-Chem)and incorporated meteorological data assimilation within the Flux Adjusting Surface Data Assimilation System(FASDAS).We compared three forecast scenarios:one with only meteorology and no chemistry(OMET),one with gas and aerosol chemistry and no assimilation(NODA),and one with both chemistry and assimilation(FASDAS).We found that FASDAS resulted in lower planetary boundary layer height(PBLH),downward surface shortwave flux,and 2-m temperature by up to 800 m,200 W m^(−2),and 6℃ on the land portion,respectively,while the opposite was observed near the eruption site.We validated the model against the observations and the results showed that FASDAS significantly enhanced the model performance in retrieving meteorological variables.However,the simulations also revealed significant biases in the concentration of volcanic ash around the ash clouds.Data from the Copernicus TROPOspheric Monitoring Instrument Sentinel-5 Precursor(TROPOMI-S5P)showed a westward trend of the total SO2 emissions.This work demonstrates the significant contribution of data assimilation to the results of operational air quality predictions during violent volcanic eruption events.