The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning cal...The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.展开更多
The present study is devoted to researching the thermal security problems of large-scale solid rocket motor with Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB). A two-dimensional axisymmetric model fo...The present study is devoted to researching the thermal security problems of large-scale solid rocket motor with Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB). A two-dimensional axisymmetric model for the cook-off of solid rocket motor is established. The reaction kinetics for the cook-off process of AP/HTPB is described by the two-step global chemical mechanism. Numerical predictions of the cook-off behavior for the propellant are conducted at fast heating rate of 1.45-2.45 K/s,and slow heating rate of 0.001-0.003 K/s, respectively. The results show that in the fast cook-off condition. the initial ignition position of AP/HTPB occurs in the annular region of the outer wall of propellant without exception, and the center point in the region is(889.1,149.5). For the region, the axial width is1.8 mm and radial thickness is 0.8 mm. However, in the slow cook-off condition, the ignition center position is shifted along the axial direction toward the right end face of the propellant with the increase of heating rate. Therefore, the influence of heating rate on ignition temperature and ignition delay time is nonnegligible within a certain range.展开更多
文摘The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.
文摘The present study is devoted to researching the thermal security problems of large-scale solid rocket motor with Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB). A two-dimensional axisymmetric model for the cook-off of solid rocket motor is established. The reaction kinetics for the cook-off process of AP/HTPB is described by the two-step global chemical mechanism. Numerical predictions of the cook-off behavior for the propellant are conducted at fast heating rate of 1.45-2.45 K/s,and slow heating rate of 0.001-0.003 K/s, respectively. The results show that in the fast cook-off condition. the initial ignition position of AP/HTPB occurs in the annular region of the outer wall of propellant without exception, and the center point in the region is(889.1,149.5). For the region, the axial width is1.8 mm and radial thickness is 0.8 mm. However, in the slow cook-off condition, the ignition center position is shifted along the axial direction toward the right end face of the propellant with the increase of heating rate. Therefore, the influence of heating rate on ignition temperature and ignition delay time is nonnegligible within a certain range.