Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been...Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.展开更多
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD...This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.展开更多
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su...A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm.展开更多
WCE (Wireless Capsule Endoscopy) is a new technology that combines computer vision and medicine, allowing doctors to visualize the conditions inside the intestines, achieving good diagnostic results. However, due to t...WCE (Wireless Capsule Endoscopy) is a new technology that combines computer vision and medicine, allowing doctors to visualize the conditions inside the intestines, achieving good diagnostic results. However, due to the complex intestinal environment and limited pixel resolution of WCE videos, lesions are not easily detectable, and it takes an experienced doctor 1–2 h to analyze a complete WCE video. The use of computer-aided diagnostic methods, assisting or even replacing manual WCE diagnosis, has significant application value. In response to the issue of intestinal lesion detection in WCE videos, this paper proposes a multi-scale feature fusion network model TSD-YOLO based on the YOLO (You Only Look Once) architecture: (I) a Tiny Detection Layer to avoid the loss of shallow feature information for tiny-scale targets;(II) integrating a simple, parameter-free attention module (SimAM) at the neck to better extract local lesion features and fuse features;(III) incorporating a new loss function DIoU (Distance Intersection over Union) to better achieve boundary box regression for target detection. This model was validated using the WCE dataset from Kyushu University Hospital. For the dataset containing 18,000 images, the evaluation metrics of our model for 12 types of lesions, outperformed existing reported results from advanced models on this dataset, and the mAP (mean Average Precision) and precision evaluation metrics improved by 3.7% and 0.9% over the benchmark model.展开更多
The advent of 6G wireless networks promises unprecedented connectivity,supporting ultra-high data rates,low latency,and massive device connectivity.However,these ambitious goals introduce significant challenges,partic...The advent of 6G wireless networks promises unprecedented connectivity,supporting ultra-high data rates,low latency,and massive device connectivity.However,these ambitious goals introduce significant challenges,particularly in channel estimation due to complex and dynamic propagation environments.This paper explores the concept of channel knowledge maps(CKMs)as a solution to these challenges.CKMs enable environment-aware communications by providing location-specific channel information,reducing reliance on real-time pilot measurements.We categorize CKM construction techniques into measurement-based,model-based,and hybrid methods,and examine their key applications in integrated sensing and communication(ISAC)systems,beamforming,trajectory optimization of unmanned aerial vehicles(UAVs),base station(BS)placement,and resource allocation.Furthermore,we discuss open challenges and propose future research directions to enhance the robustness,accuracy,and scalability of CKM-based systems in the evolving 6G landscape.展开更多
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These...Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.展开更多
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different...This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.展开更多
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n...Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagne...An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagnetic and circuit analysis is conducted to establish the magnetic induction intensity and equivalent circuit models for the wireless power transmission system.Combining these models involves using the number of layers in each dimension as the optimization variable.Constraints are imposed based on the normalized standard deviation of the receiving-end load power and spatial dimensions.At the same time,the optimization objective aims to maximize the average power of the receiving-end load.This process leads to formulating an optimization model for the RC.Finally,three-dimensional RCs with three different sets of parameters are wound,and the receiving-end load power of these coils is experimentally tested under various drive currents.The experimental values of the receiving-end load power exhibit a consistent trend with theoretical values,with experimental values consistently lower than theoretical values.The optimized coil parameters are determined by conducting comparative exper-iments,with a theoretical value of 4.6%for the normalized standard deviation of the receiving-end load power and an average experimental value of 9.6%.The study addressed the power supply issue of near-infrared capsule robots,which is important for early diagnosing and treating gastrointestinal diseases.展开更多
Accurate quantification of exercise interventions and changes in muscle function is essential for personalized health management.Electrical impedance myography(EIM)technology offers an innovative,noninvasive,painless,...Accurate quantification of exercise interventions and changes in muscle function is essential for personalized health management.Electrical impedance myography(EIM)technology offers an innovative,noninvasive,painless,and easy-to-perform solution for muscle health monitoring.However,current EIM platforms face a number of limitations,including large device size,wired connections,and instability of the electrode-skin interface,which limit their applicability for monitoring mus-cle movement.In this study,a miniature wireless EIM platform with a user-friendly smartphone app is proposed and devel-oped.The miniature,wireless,multi-frequency(20 kHz-1 MHz)EIM platform is equipped with flexible microneedle array elec-trodes(MAE).The advantages of MAEs over conventional electrodes were demonstrated by physical field modeling simula-tions and skin-electrode contact impedance comparison tests.The smartphone APP was developed to wirelessly operate the EIM platform,and to transmit and process real-time muscle impedance data.To validate its effectiveness,a seven-day adaptive fatigue training study was conducted,which demonstrated that the EIM platform was able to detect muscle adaptations and serve as a reliable indicator of fatigue.This study presents an innovative approach to applying EIM technology to muscle health monitoring and exercise testing,thereby advancing the development of personalized health management and athletic performance assessment.展开更多
基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟A...基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟AP技术与高精度CNN(Convolutional Neural Network)判别模型的定位方法。该方法通过距离比定位得到虚拟AP的位置,并将该信息与RSSI融合作为数据增强CNN模型的输入,确定样本的位置。设计实验方案采集实际的用户终端RSSI数据,构建指纹定位的数据集,验证所提出的指纹定位方案的有效性。实验结果表明,在该数据集上,所提出的方法在确定区域时的准确度达到91%,并将95%的定位误差控制在2 m以内。对比现有的定位方案,所提出的方案在定位精度上有显著提升。展开更多
针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造...针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造特征信息提取,使用STEP AP 242和PDM相结合的集成方式,将金刚石滚轮三维模型作为制造加工信息的载体,并选择SolidWorks作为CAD和CAM软件,以及选择Aras Innovator作为PDM平台,使用C#编程语言和数据库技术开发了金刚石滚轮CAD/CAPP/CAM/PDM集成系统,并进行了实例验证。展开更多
文摘Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.
基金supported in part by the National Natural Science Foundation of China(No.61906156).
文摘This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.
文摘A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm.
文摘WCE (Wireless Capsule Endoscopy) is a new technology that combines computer vision and medicine, allowing doctors to visualize the conditions inside the intestines, achieving good diagnostic results. However, due to the complex intestinal environment and limited pixel resolution of WCE videos, lesions are not easily detectable, and it takes an experienced doctor 1–2 h to analyze a complete WCE video. The use of computer-aided diagnostic methods, assisting or even replacing manual WCE diagnosis, has significant application value. In response to the issue of intestinal lesion detection in WCE videos, this paper proposes a multi-scale feature fusion network model TSD-YOLO based on the YOLO (You Only Look Once) architecture: (I) a Tiny Detection Layer to avoid the loss of shallow feature information for tiny-scale targets;(II) integrating a simple, parameter-free attention module (SimAM) at the neck to better extract local lesion features and fuse features;(III) incorporating a new loss function DIoU (Distance Intersection over Union) to better achieve boundary box regression for target detection. This model was validated using the WCE dataset from Kyushu University Hospital. For the dataset containing 18,000 images, the evaluation metrics of our model for 12 types of lesions, outperformed existing reported results from advanced models on this dataset, and the mAP (mean Average Precision) and precision evaluation metrics improved by 3.7% and 0.9% over the benchmark model.
基金supported by the National Natural Science Foundation of China under Grants Nos.62431014 and 62271310the Fundamental Research Funds for the Central Universities of China。
文摘The advent of 6G wireless networks promises unprecedented connectivity,supporting ultra-high data rates,low latency,and massive device connectivity.However,these ambitious goals introduce significant challenges,particularly in channel estimation due to complex and dynamic propagation environments.This paper explores the concept of channel knowledge maps(CKMs)as a solution to these challenges.CKMs enable environment-aware communications by providing location-specific channel information,reducing reliance on real-time pilot measurements.We categorize CKM construction techniques into measurement-based,model-based,and hybrid methods,and examine their key applications in integrated sensing and communication(ISAC)systems,beamforming,trajectory optimization of unmanned aerial vehicles(UAVs),base station(BS)placement,and resource allocation.Furthermore,we discuss open challenges and propose future research directions to enhance the robustness,accuracy,and scalability of CKM-based systems in the evolving 6G landscape.
基金partially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025242)by the Korea government(MIST)(RS-2023-00302751,RS-2024-00343686)the Research Grant of Kwangwoon University in 2024。
文摘Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.
基金funded by Universiti Putra Malaysia under a Geran Putra Inisiatif(GPI)research grant with reference to GP-GPI/2023/9762100.
文摘This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government Ministry of Science and ICT(MIST)(RS-2022-00165225).
文摘Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
基金the Project of the Science and Technology Commission of Shanghai Municipality(No.20142201300)the National Facility for Translational Medicine(Shanghai)Open Project Foundation(No.TMSK-2021-302)the China Postdoctoral Science Foundation(No.2023M732267)。
文摘An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagnetic and circuit analysis is conducted to establish the magnetic induction intensity and equivalent circuit models for the wireless power transmission system.Combining these models involves using the number of layers in each dimension as the optimization variable.Constraints are imposed based on the normalized standard deviation of the receiving-end load power and spatial dimensions.At the same time,the optimization objective aims to maximize the average power of the receiving-end load.This process leads to formulating an optimization model for the RC.Finally,three-dimensional RCs with three different sets of parameters are wound,and the receiving-end load power of these coils is experimentally tested under various drive currents.The experimental values of the receiving-end load power exhibit a consistent trend with theoretical values,with experimental values consistently lower than theoretical values.The optimized coil parameters are determined by conducting comparative exper-iments,with a theoretical value of 4.6%for the normalized standard deviation of the receiving-end load power and an average experimental value of 9.6%.The study addressed the power supply issue of near-infrared capsule robots,which is important for early diagnosing and treating gastrointestinal diseases.
文摘Accurate quantification of exercise interventions and changes in muscle function is essential for personalized health management.Electrical impedance myography(EIM)technology offers an innovative,noninvasive,painless,and easy-to-perform solution for muscle health monitoring.However,current EIM platforms face a number of limitations,including large device size,wired connections,and instability of the electrode-skin interface,which limit their applicability for monitoring mus-cle movement.In this study,a miniature wireless EIM platform with a user-friendly smartphone app is proposed and devel-oped.The miniature,wireless,multi-frequency(20 kHz-1 MHz)EIM platform is equipped with flexible microneedle array elec-trodes(MAE).The advantages of MAEs over conventional electrodes were demonstrated by physical field modeling simula-tions and skin-electrode contact impedance comparison tests.The smartphone APP was developed to wirelessly operate the EIM platform,and to transmit and process real-time muscle impedance data.To validate its effectiveness,a seven-day adaptive fatigue training study was conducted,which demonstrated that the EIM platform was able to detect muscle adaptations and serve as a reliable indicator of fatigue.This study presents an innovative approach to applying EIM technology to muscle health monitoring and exercise testing,thereby advancing the development of personalized health management and athletic performance assessment.
文摘针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造特征信息提取,使用STEP AP 242和PDM相结合的集成方式,将金刚石滚轮三维模型作为制造加工信息的载体,并选择SolidWorks作为CAD和CAM软件,以及选择Aras Innovator作为PDM平台,使用C#编程语言和数据库技术开发了金刚石滚轮CAD/CAPP/CAM/PDM集成系统,并进行了实例验证。