为了进一步提升基于RSS(received signal strength)的WiFi室内定位算法的精度和可靠度,本文对比研究了基于标准差(standard deviation,STD)的AP(access points)选取算法和基于信号丢失率(signal loss rate,SLR)的AP选取算法,并提出了新...为了进一步提升基于RSS(received signal strength)的WiFi室内定位算法的精度和可靠度,本文对比研究了基于标准差(standard deviation,STD)的AP(access points)选取算法和基于信号丢失率(signal loss rate,SLR)的AP选取算法,并提出了新的基于STD和SLR融合的AP选取算法。实验结果表明,基于STD的AP选取算法定位精度受到AP子集个数的影响,当子集个数大于6并继续增加时,定位精度变化不再明显;基于SLR的AP选取算法耗时最少;新的基于STD和SLR融合的AP选取算法定位耗时略大于融合前的两种AP选取算法,但其定位精度和可靠性明显优于其他两种AP选取算法。展开更多
We propose an efficient hybrid algorithm WDHP in this paper for mining frequent access patterns. WDHP adopts the techniques of DHP to optimize its performance, which is using hash table to filter candidate set and tri...We propose an efficient hybrid algorithm WDHP in this paper for mining frequent access patterns. WDHP adopts the techniques of DHP to optimize its performance, which is using hash table to filter candidate set and trimming database. Whenever the database is trimmed to a size less than a specified threshold, the algorithm puts the database into main memory by constructing a tree, and finds frequent patterns on the tree. The experiment shows that WDHP outperform algorithm DHP and main memory based algorithm WAP in execution efficiency.展开更多
A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental e...A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.展开更多
文摘为了进一步提升基于RSS(received signal strength)的WiFi室内定位算法的精度和可靠度,本文对比研究了基于标准差(standard deviation,STD)的AP(access points)选取算法和基于信号丢失率(signal loss rate,SLR)的AP选取算法,并提出了新的基于STD和SLR融合的AP选取算法。实验结果表明,基于STD的AP选取算法定位精度受到AP子集个数的影响,当子集个数大于6并继续增加时,定位精度变化不再明显;基于SLR的AP选取算法耗时最少;新的基于STD和SLR融合的AP选取算法定位耗时略大于融合前的两种AP选取算法,但其定位精度和可靠性明显优于其他两种AP选取算法。
文摘We propose an efficient hybrid algorithm WDHP in this paper for mining frequent access patterns. WDHP adopts the techniques of DHP to optimize its performance, which is using hash table to filter candidate set and trimming database. Whenever the database is trimmed to a size less than a specified threshold, the algorithm puts the database into main memory by constructing a tree, and finds frequent patterns on the tree. The experiment shows that WDHP outperform algorithm DHP and main memory based algorithm WAP in execution efficiency.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2014AA123103)
文摘A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.