Brominated flame retardants(BFRs),have been extensively utilized in modern industry,contaminate aquatic ecosystems.They exhibit bioaccumulation and biomagnification properties,posing significant risks to human health,...Brominated flame retardants(BFRs),have been extensively utilized in modern industry,contaminate aquatic ecosystems.They exhibit bioaccumulation and biomagnification properties,posing significant risks to human health,such as developmental disorders,endocrine disruption,and other adverse effects.Current treatment methods for BFRs encompass chemical,electrochemical,biological,and advanced oxidation processes(AOPs).Among them,AOPs are particularly notable for their stability,ease of control,and production of clean end-products.This paper focuses on employing a titanium dioxide(TiO_(2))photocatalytic system to investigate the degradation of 2,4,6-tribromophenol(TBP).展开更多
Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR...Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal perfomlance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm^-2 was required to remove 90% of 100μg.L^-1 MC-LR, which amount significantly decreased to 500 mJ.cm^-2 when 1.7mg·L^-1 H2O2 was added. 0.25 mg.L^-1 O3, or 0.125 mg·L^-1 O9 with 1.7 mg·L^-1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equ valent to 0.01 mg·L^-1 Zn^2+,ratsed to 0.05 mg.L Zn after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.展开更多
As a key step in waste activated sludge(WAS)treatment and disposal,WAS dewatering can minimize the amount of WAS and decrease the costs of transportation,storage management,treatment,and disposal.Advanced oxidation pr...As a key step in waste activated sludge(WAS)treatment and disposal,WAS dewatering can minimize the amount of WAS and decrease the costs of transportation,storage management,treatment,and disposal.Advanced oxidation processes(AOPs)have been widely explored in WAS dewatering due to the excellent oxidizing properties and efficient decomposition capacity since the 21^(st)century.This review outlined the mechanisms of AOPs to improve WAS dewatering and pointed out the shortcomings of the existing mechanisms.Then,the applications of AOPs-based WAS dewatering processes for enhanced WAS dewatering were reviewed,and the intrinsic limitations of AOPs-based WAS dewatering processes in engineering applications were proposed.In addition,an overall review of AOPs-based WAS dewatering researches was also conducted through bibliometric analysis,and future research hotspots in the field of AOPs-based WAS dewatering were proposed.Finally,the positive effects of the AOPs-based WAS dewatering processes on pollutant removal and resource recovery were investigated,and an integrated plan for the harmless disposal of WAS was constructed to achieve a positive reform of the traditional WAS management plan.This review provided theoretical basis and technical reference for the development of efficient,economical,and environmental AOPs for enhanced WAS dewatering to facilitate the application of AOPs in actual WAS dewatering engineering.展开更多
Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate...Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate interactions of the reactants,and limited active site exposure hinder treatment efficiency.Porous carbocatalysts with high specific surface area,tunable pore size,and programmable active sites demonstrate outstanding performance in activating diverse types of peroxides to generate active species for treatment of aqueous organic pollutants.The pore-rich structures enhance reaction kinetics for peroxide activation by facilitating diffusion of the reactants and their interactions.Additionally,the structural flexibility of porous structures favors the accommodation of highly dispersed metal species and allows for precise tuning of the microenvironment around the active sites,which further enhances the catalytic activity.This review critically summarizes the recent research progress in the applications of engineered porous carbocatalysts for peroxide activation and outlines the prevailing pore construction methods in carbocatalysts.Moreover,engineering strategies to regulate the mass transfer efficiency and fine-tune the microenvironment around the active sites are systematically addressed to enhance their catalytic peroxide activation performances.Challenges and future research opportunities pertaining to the design,optimization,mechanistic investigation,and practical application of porous carbocatalysts in peroxide activation are also proposed.展开更多
Oxidative stress arises from disruption of the balance between reactive oxygen species(ROS)production and detoxification and constitutes a fundamental driver of diverse pathological diseases.Skin photoaging is a well-...Oxidative stress arises from disruption of the balance between reactive oxygen species(ROS)production and detoxification and constitutes a fundamental driver of diverse pathological diseases.Skin photoaging is a well-recognized example,primarily driven by chronic ultraviolet(UV)exposure and marked by progressive structural and functional deterioration.UV-induced ROS accelerate macromolecular degradation and impair epidermal and dermal barrier integrity,highlighting the urgent need for effective antioxidant interventions.Antioxidant peptides(AOPs),whether naturally occurring or synthetically engineered,have shown considerable potential in mitigating ROS-induced cellular damage.Amphibians,which possess highly permeable skin and are continuously challenged by fluctuating environmental conditions,represent a rich source of bioactive peptides with potent antioxidant properties.In particular,AOPs isolated from amphibian skin secretions demonstrate notable efficacy in ROS scavenging and mitigation of oxidative damage,offering promising candidates for anti-photoaging therapies.This review provides an integrated overview of ROS generation and signaling,the molecular mechanisms linking oxidative stress to skin photoaging,and the emerging biomedical potential of amphibian-derived AOPs.Deeper mechanistic insight into their structure and function is expected to accelerate the development of novel peptide-based interventions for photoaging and other oxidative stress-associated dermatological disorders.展开更多
Addressing the growing challenge of water contamination,this study comparatively evaluated a persulfate(PDS)system activated by nonradical nitrogen-doped carbon nanotubes(N-CNTs)versus a PDS system activated by radica...Addressing the growing challenge of water contamination,this study comparatively evaluated a persulfate(PDS)system activated by nonradical nitrogen-doped carbon nanotubes(N-CNTs)versus a PDS system activated by radical-based iron(Fe^(2+)),both used for the degradation of bisphenol A(BPA).The N-CNTs/PDS system,driven by the electron transfer mechanism,achieved remarkable 90.9%BPA removal within 30 min at high BPA concentrations,significantly outperforming the Fe^(2+)/PDS system,which attained only 38.9%removal.The N-CNTs/PDS system maintained robust degradation efficiency across a wide range of BPA concentrations and exhibited a high degree of resilience in diverse water matrices.By directly abstracting electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS^(*)complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.展开更多
In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,pol...In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,polar N sites,and excellent light-to-heat conversion ability.The controlled graphitization temperature was optimized to improve the activity state of metal species.The results reveal that Co_(3)O_(4) nanoparticles incorporated thin-layer carbon formed onto the Mn-confined mesoporous silica,and more Co(Ⅱ)and Mn(Ⅲ)were generated in the MS-Co-500N_(2) compared to MS-Co-500Air,which could cause the accelerated reaction cycles in the potassium peroxymonosulfate complex salt(PMS)activation.The degradation experiments demonstrated that the catalyst almost completely degraded biphenol A within 10 min with the reaction rate constant of 0.56 min−1,nearly 205 times enhancement compared to the MS-Co-500Air.The free radicals trapping and quenching control demonstrated the dominant role of ^(1)O_(2) and·O_(2) in the degradation process.Due to the efficient incorporation of Co_(3)O_(4) nanoparticles and thin-layer carbon,the photothermal conversion properties were explored and utilized for solar-driving interface water evaporation and cleanwater recovery.To explore the practical application possibility in treating complicated polluted wastewater,the MS-Co-500N_(2) materials were fixed on the melamine sponge by Ca ions-trigger alginate crosslinking strategy,and the integrated monolith evaporator shows an excellent water evaporation performance(1.52 kg·m^(−2)·h^(−1))and synchronous pollutant removal in biphenol A(94%,10 min),carbamazepine(92%,10 min),oxytetracycline(84%,20 min)and norfloxacin(84%,20 min).展开更多
针对当前鞍钢鲅鱼圈焦化废水处理系统水质不稳的相关问题,在原有“A 2+O+混凝沉淀”和“臭氧催化氧化+B A F”工艺基础上,新增“A O P高级氧化”单元和“超滤+反渗透”膜单元,提升了出水水质。引入中水回用技术后废水回用率达到70%以上...针对当前鞍钢鲅鱼圈焦化废水处理系统水质不稳的相关问题,在原有“A 2+O+混凝沉淀”和“臭氧催化氧化+B A F”工艺基础上,新增“A O P高级氧化”单元和“超滤+反渗透”膜单元,提升了出水水质。引入中水回用技术后废水回用率达到70%以上,解决了焦化废水平衡问题。展开更多
文摘Brominated flame retardants(BFRs),have been extensively utilized in modern industry,contaminate aquatic ecosystems.They exhibit bioaccumulation and biomagnification properties,posing significant risks to human health,such as developmental disorders,endocrine disruption,and other adverse effects.Current treatment methods for BFRs encompass chemical,electrochemical,biological,and advanced oxidation processes(AOPs).Among them,AOPs are particularly notable for their stability,ease of control,and production of clean end-products.This paper focuses on employing a titanium dioxide(TiO_(2))photocatalytic system to investigate the degradation of 2,4,6-tribromophenol(TBP).
文摘Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal perfomlance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm^-2 was required to remove 90% of 100μg.L^-1 MC-LR, which amount significantly decreased to 500 mJ.cm^-2 when 1.7mg·L^-1 H2O2 was added. 0.25 mg.L^-1 O3, or 0.125 mg·L^-1 O9 with 1.7 mg·L^-1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equ valent to 0.01 mg·L^-1 Zn^2+,ratsed to 0.05 mg.L Zn after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.
基金funded under the auspices of the National Key Research and Development Program of China(No.2023YFC3207404-01)the Postdoctoral Fellowship Program of CPSF(No.GZC20233450)the Heilongjiang Province Postdoctoral Science Foundation(No.LBHZ23154)。
文摘As a key step in waste activated sludge(WAS)treatment and disposal,WAS dewatering can minimize the amount of WAS and decrease the costs of transportation,storage management,treatment,and disposal.Advanced oxidation processes(AOPs)have been widely explored in WAS dewatering due to the excellent oxidizing properties and efficient decomposition capacity since the 21^(st)century.This review outlined the mechanisms of AOPs to improve WAS dewatering and pointed out the shortcomings of the existing mechanisms.Then,the applications of AOPs-based WAS dewatering processes for enhanced WAS dewatering were reviewed,and the intrinsic limitations of AOPs-based WAS dewatering processes in engineering applications were proposed.In addition,an overall review of AOPs-based WAS dewatering researches was also conducted through bibliometric analysis,and future research hotspots in the field of AOPs-based WAS dewatering were proposed.Finally,the positive effects of the AOPs-based WAS dewatering processes on pollutant removal and resource recovery were investigated,and an integrated plan for the harmless disposal of WAS was constructed to achieve a positive reform of the traditional WAS management plan.This review provided theoretical basis and technical reference for the development of efficient,economical,and environmental AOPs for enhanced WAS dewatering to facilitate the application of AOPs in actual WAS dewatering engineering.
基金supports from the National Natural Science Foundation of China(Nos.22478426 and 22278436)Young Elite Scientists Sponsorship Program by BAST(No.1101020370359)Science Foundation of China University of Petroleum,Beijing(No.2462021QNXZ009)。
文摘Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate interactions of the reactants,and limited active site exposure hinder treatment efficiency.Porous carbocatalysts with high specific surface area,tunable pore size,and programmable active sites demonstrate outstanding performance in activating diverse types of peroxides to generate active species for treatment of aqueous organic pollutants.The pore-rich structures enhance reaction kinetics for peroxide activation by facilitating diffusion of the reactants and their interactions.Additionally,the structural flexibility of porous structures favors the accommodation of highly dispersed metal species and allows for precise tuning of the microenvironment around the active sites,which further enhances the catalytic activity.This review critically summarizes the recent research progress in the applications of engineered porous carbocatalysts for peroxide activation and outlines the prevailing pore construction methods in carbocatalysts.Moreover,engineering strategies to regulate the mass transfer efficiency and fine-tune the microenvironment around the active sites are systematically addressed to enhance their catalytic peroxide activation performances.Challenges and future research opportunities pertaining to the design,optimization,mechanistic investigation,and practical application of porous carbocatalysts in peroxide activation are also proposed.
基金supported by the National Natural Science Foundation of China(32070439)Key Research&Development Plan in Social Development of Jiangsu Province(BE2022723)Suzhou Agricultural Science and Technology Innovation Project(SNG2022054)。
文摘Oxidative stress arises from disruption of the balance between reactive oxygen species(ROS)production and detoxification and constitutes a fundamental driver of diverse pathological diseases.Skin photoaging is a well-recognized example,primarily driven by chronic ultraviolet(UV)exposure and marked by progressive structural and functional deterioration.UV-induced ROS accelerate macromolecular degradation and impair epidermal and dermal barrier integrity,highlighting the urgent need for effective antioxidant interventions.Antioxidant peptides(AOPs),whether naturally occurring or synthetically engineered,have shown considerable potential in mitigating ROS-induced cellular damage.Amphibians,which possess highly permeable skin and are continuously challenged by fluctuating environmental conditions,represent a rich source of bioactive peptides with potent antioxidant properties.In particular,AOPs isolated from amphibian skin secretions demonstrate notable efficacy in ROS scavenging and mitigation of oxidative damage,offering promising candidates for anti-photoaging therapies.This review provides an integrated overview of ROS generation and signaling,the molecular mechanisms linking oxidative stress to skin photoaging,and the emerging biomedical potential of amphibian-derived AOPs.Deeper mechanistic insight into their structure and function is expected to accelerate the development of novel peptide-based interventions for photoaging and other oxidative stress-associated dermatological disorders.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2024LHMS05048).
文摘Addressing the growing challenge of water contamination,this study comparatively evaluated a persulfate(PDS)system activated by nonradical nitrogen-doped carbon nanotubes(N-CNTs)versus a PDS system activated by radical-based iron(Fe^(2+)),both used for the degradation of bisphenol A(BPA).The N-CNTs/PDS system,driven by the electron transfer mechanism,achieved remarkable 90.9%BPA removal within 30 min at high BPA concentrations,significantly outperforming the Fe^(2+)/PDS system,which attained only 38.9%removal.The N-CNTs/PDS system maintained robust degradation efficiency across a wide range of BPA concentrations and exhibited a high degree of resilience in diverse water matrices.By directly abstracting electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS^(*)complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.
基金supported by the National Natural Science Foundation of China(No.21908085)the China Postdoctoral Science Foundation(No.2023M731422)+3 种基金and the Science and Technology Plan School-Enterprise Cooperation Industry-University-Research Forward-Looking Project of Zhangjiagang(No.ZKYY2341)Suzhou Hospital Association Infection Management Special Research(No.SZSYYXH-2023-ZY1)Suzhou Medical Key Discipline of Occupational Medicine(No.SZXK202115)Jiangsu Undergraduate Innovative Training Program(No.SJCX23_2163).
文摘In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,polar N sites,and excellent light-to-heat conversion ability.The controlled graphitization temperature was optimized to improve the activity state of metal species.The results reveal that Co_(3)O_(4) nanoparticles incorporated thin-layer carbon formed onto the Mn-confined mesoporous silica,and more Co(Ⅱ)and Mn(Ⅲ)were generated in the MS-Co-500N_(2) compared to MS-Co-500Air,which could cause the accelerated reaction cycles in the potassium peroxymonosulfate complex salt(PMS)activation.The degradation experiments demonstrated that the catalyst almost completely degraded biphenol A within 10 min with the reaction rate constant of 0.56 min−1,nearly 205 times enhancement compared to the MS-Co-500Air.The free radicals trapping and quenching control demonstrated the dominant role of ^(1)O_(2) and·O_(2) in the degradation process.Due to the efficient incorporation of Co_(3)O_(4) nanoparticles and thin-layer carbon,the photothermal conversion properties were explored and utilized for solar-driving interface water evaporation and cleanwater recovery.To explore the practical application possibility in treating complicated polluted wastewater,the MS-Co-500N_(2) materials were fixed on the melamine sponge by Ca ions-trigger alginate crosslinking strategy,and the integrated monolith evaporator shows an excellent water evaporation performance(1.52 kg·m^(−2)·h^(−1))and synchronous pollutant removal in biphenol A(94%,10 min),carbamazepine(92%,10 min),oxytetracycline(84%,20 min)and norfloxacin(84%,20 min).