针对当前去雾算法效率不高、细节恢复较差等问题,提出一种改进多尺度AOD-Net(all in one dehazing network)的去雾算法。通过增加注意力机制、调整网络结构和改变损失函数这3方面的改进,增强网络的特征提取和恢复能力。模型的第1层增加...针对当前去雾算法效率不高、细节恢复较差等问题,提出一种改进多尺度AOD-Net(all in one dehazing network)的去雾算法。通过增加注意力机制、调整网络结构和改变损失函数这3方面的改进,增强网络的特征提取和恢复能力。模型的第1层增加空间金字塔注意力(spatial pyramid attention,SPA)机制,使网络在特征提取过程中避免冗余信息。将网络改成拉普拉斯金字塔型结构,使模型能够提取不同尺度的特征,保留特征图的高频信息。使用多尺度结构相似性(multi-scale structural similarity,MS-SSIM)+L1损失函数替换原有的损失函数,提高模型保留结构的能力。实验结果表明,本方法去雾效果更好,细节更丰富。在定性可视化评价方面,去雾图像效果优于原网络。在定量评估层面,与原网络相比PSNR值提升了2.55 dB,SSIM值提升了0.04,IE熵值增加了0.18,这些数值指标充分验证了本算法的出色去雾效果和稳定性。展开更多
针对雾霾天气下视频监控图像出现的细节缺失、色彩暗淡和亮度降低等问题,目前现有的图像去雾算法在视频监控场景中往往难以同时满足去雾效果和实时处理的要求。为了恢复出质量更高的无雾图像,文章在传统AOD-Net算法中引入Squeeze and Ex...针对雾霾天气下视频监控图像出现的细节缺失、色彩暗淡和亮度降低等问题,目前现有的图像去雾算法在视频监控场景中往往难以同时满足去雾效果和实时处理的要求。为了恢复出质量更高的无雾图像,文章在传统AOD-Net算法中引入Squeeze and Excitation机制,以自适应的方式分配通道权重,同时引入金字塔池化模块,扩大网络感受野,最终采用复合损失函数,以均衡考虑图像的边缘特征及纹理细节。同时,此系统以Zynq作为实现平台,使用Vivado HLS进行接口为AXI4-Stream的新型AOD-Net算法IP核的开发,使用PL端作为算法的实现单元,PS端作为控制核心,充分发挥异构SoC的架构优势。实验结果表明:基于Zynq平台下的新型AOD-Net算法,图像去雾效果显著,信噪比极值优化了2.45 dB,结构匹配度提升至91.2%,降低了雾霾天气对视频监控图像的影响。展开更多
针对航拍图像易受雾气影响,AOD-Net(All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题,本文提出了一种基于改进AOD-Net的航拍图像去雾算法.本文主要从网络结构、损失函数、训练方式三个方面...针对航拍图像易受雾气影响,AOD-Net(All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题,本文提出了一种基于改进AOD-Net的航拍图像去雾算法.本文主要从网络结构、损失函数、训练方式三个方面对AOD-Net进行改良.首先在AOD-Net的第二个特征融合层上添加了第一层的特征图,用全逐点卷积替换了传统卷积方式,并用多尺度结构提升了网络对细节的处理能力.然后用包含有图像重构损失函数、SSIM(Structural similarity)损失函数以及TV(Total variation)损失函数的复合损失函数优化去雾图的对比度、亮度以及色彩饱和度.最后采用分段式的训练方式进一步提升了去雾图的质量.实验结果表明,经该算法去雾后的图像拥有令人满意的去雾结果,图像的饱和度和对比度相较于AOD-Net更自然.与其他对比算法相比,该算法在合成图像实验、真实航拍图像实验以及算法耗时测试的综合表现上更好,更适用于航拍图像实时去雾.展开更多
文摘针对当前去雾算法效率不高、细节恢复较差等问题,提出一种改进多尺度AOD-Net(all in one dehazing network)的去雾算法。通过增加注意力机制、调整网络结构和改变损失函数这3方面的改进,增强网络的特征提取和恢复能力。模型的第1层增加空间金字塔注意力(spatial pyramid attention,SPA)机制,使网络在特征提取过程中避免冗余信息。将网络改成拉普拉斯金字塔型结构,使模型能够提取不同尺度的特征,保留特征图的高频信息。使用多尺度结构相似性(multi-scale structural similarity,MS-SSIM)+L1损失函数替换原有的损失函数,提高模型保留结构的能力。实验结果表明,本方法去雾效果更好,细节更丰富。在定性可视化评价方面,去雾图像效果优于原网络。在定量评估层面,与原网络相比PSNR值提升了2.55 dB,SSIM值提升了0.04,IE熵值增加了0.18,这些数值指标充分验证了本算法的出色去雾效果和稳定性。
文摘针对雾霾天气下视频监控图像出现的细节缺失、色彩暗淡和亮度降低等问题,目前现有的图像去雾算法在视频监控场景中往往难以同时满足去雾效果和实时处理的要求。为了恢复出质量更高的无雾图像,文章在传统AOD-Net算法中引入Squeeze and Excitation机制,以自适应的方式分配通道权重,同时引入金字塔池化模块,扩大网络感受野,最终采用复合损失函数,以均衡考虑图像的边缘特征及纹理细节。同时,此系统以Zynq作为实现平台,使用Vivado HLS进行接口为AXI4-Stream的新型AOD-Net算法IP核的开发,使用PL端作为算法的实现单元,PS端作为控制核心,充分发挥异构SoC的架构优势。实验结果表明:基于Zynq平台下的新型AOD-Net算法,图像去雾效果显著,信噪比极值优化了2.45 dB,结构匹配度提升至91.2%,降低了雾霾天气对视频监控图像的影响。
文摘针对航拍图像易受雾气影响,AOD-Net(All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题,本文提出了一种基于改进AOD-Net的航拍图像去雾算法.本文主要从网络结构、损失函数、训练方式三个方面对AOD-Net进行改良.首先在AOD-Net的第二个特征融合层上添加了第一层的特征图,用全逐点卷积替换了传统卷积方式,并用多尺度结构提升了网络对细节的处理能力.然后用包含有图像重构损失函数、SSIM(Structural similarity)损失函数以及TV(Total variation)损失函数的复合损失函数优化去雾图的对比度、亮度以及色彩饱和度.最后采用分段式的训练方式进一步提升了去雾图的质量.实验结果表明,经该算法去雾后的图像拥有令人满意的去雾结果,图像的饱和度和对比度相较于AOD-Net更自然.与其他对比算法相比,该算法在合成图像实验、真实航拍图像实验以及算法耗时测试的综合表现上更好,更适用于航拍图像实时去雾.