With the rapid urbanization process,ground collapses caused by anthropogenic activities occur frequently.Accurate susceptibility mapping is of great significance for disaster prevention and control.In this study,1198 ...With the rapid urbanization process,ground collapses caused by anthropogenic activities occur frequently.Accurate susceptibility mapping is of great significance for disaster prevention and control.In this study,1198 ground collapse cases in Shenzhen from 2017 to 2020 were collected.Eight effective factors(elevation,relief,clay proportion,average annual precipitation,distance from water,land use type,building density,and road density)were selected to construct the evaluation index system.Ground collapse susceptibility was analyzed and mapped using the normalized frequency ratio(NFR),logistic regression(LR),and NFR-LR coupling models.Finally,the result rationality and performance of the three models were compared through frequency ratio(FR)and ROC curve.The results indicate that all three models can effectively evaluate the ground collapse susceptibility(AUC>0.7),and the NFR-LR model result is more rational and has the best performance(AUC=0.791).The very high and high susceptibility zones cover a total area of 545.68 km^(2) and involve Nanshan,Luohu,and Futian District,as well as some areas of Baoan,Guangming,and Longgang District.The ground collapses in Shenzhen mainly occurred in the built-up areas,and the greater intensity of anthropogenic activities,the more susceptible to the disaster.展开更多
Cultural ecosystem services(CES)provided by urban green infrastructure are essential for enhancing social well-being and resilience.Identifying and mapping CES at a local scale is crucial for informed land-use decisio...Cultural ecosystem services(CES)provided by urban green infrastructure are essential for enhancing social well-being and resilience.Identifying and mapping CES at a local scale is crucial for informed land-use decisions that align with citizens'perceptions.However,research on ecosystem services in Romania has been limited,with a notable gap in the assessment of CES provided by urban green spaces.This study is the first to focus on Băneasa Forest,the only urban forest in Bucharest,which serves as a vital recreational area for thousands of residents and visitors.For the first time in Romania,this research uses a web-based Participatory GIS survey to collect spatially referenced data.The survey,which combines questionnaires and mapping exercises,allows us to produce high-resolution CES maps based on 816 responses.The results reveal that the forest's natural characteristics are perceived as the primary contributors to CES.These findings are valuable for urban planners,as they highlight the needs and expectations of forest visitors,promote conservation efforts,and foster collaboration to prevent conflicts.Alongside factors frequently discussed in the literature,such as age and accessibility,the percentage of green space in residents'neighborhoods emerges as a significant factor influencing CES preferences.This insight presents a novel contribution to the literature,being of particular importance for urban planners and policymakers,as it underscores the need to consider not just the green space within parks and forests,but also the broader context of surrounding neighborhoods when planning for CES.Understanding that the availability of nearby green space influences residents'CES preferences can guide more effective strategies to enhance access to CES in urban areas,both in Bucharest and elsewhere.This is especially relevant in the face of climate change and other emerging challenges,which are likely to increase the demand for CES in the future.展开更多
PM_(2.5)and O_(3) are two major issues hindering air quality improvement in China.However,the response of these two pollutants to anthropogenic emission variations in the real atmosphere was not yet well understood.He...PM_(2.5)and O_(3) are two major issues hindering air quality improvement in China.However,the response of these two pollutants to anthropogenic emission variations in the real atmosphere was not yet well understood.Here,we selected the short-term epidemic lockdown in Wuhu in 2022 as a case study and evaluated the impacts of meteorology and anthropogenic emission on PM_(2.5)and O_(3) using field observations combined with machine learning algorithms.The results showed that NO_(2) observed during the lockdown was 32.2±8.1μg/m^(3),10.1%lower than before the lockdown,and that NO_(2) continued to decrease by 19.2%after the lockdown.Notably,both PM_(2.5)and O_(3) concentrations were higher during the lockdown than before and after the lockdown.Random forest model revealed that meteorological conditions during the lockdown increased PM_(2.5)and O_(3) by 8.7%and 24.2%,respectively,but decreased NO_(2) by 6.4%.Atmospheric pressure and relative humidity were the main meteorological variables influencing PM_(2.5)and O_(3) variations,respectively.Scenario simulation analysis uncovered that anthropogenic emission reduction caused by the lockdown reduced NO_(2) by 19.7%,but increased PM_(2.5)and O_(3) by 6.3%and 26.8%,respectively.This was mainly due to the weakening titration effect of nitrogen oxides and enhanced atmospheric oxidation capacity,further increasing O_(3) and secondary PM_(2.5)production.Our results revealed that NO_(2) in Wuhu decreased significantly due to short-term epidemic lockdown,but PM_(2.5)and O_(3) pollution were not effectively reduced.To continuously improve future urban air quality,joint reductions in emissions from multiple anthropogenic sources and multiple pollutants are required.展开更多
Airborne microorganisms(AM)have significant environmental and health implications.Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM.However,the knowledge ...Airborne microorganisms(AM)have significant environmental and health implications.Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM.However,the knowledge of AM with anthropogenic activities has not reach a consensus.In this study,we took advantage of the dramatic decline of outdoor anthropogenic activities resulting from COVID-19 lockdown to reveal their associations.We collected airborne particulate matter before and during the lockdown period in two cities.The results showed that it was fungal diversity and communities but not bacteria obviously different between pre-lockdownand lockdown samples,suggesting that airborne fungiwere more susceptible to anthropogenic activities than bacteria.However,after the implementation of lockdown,the co-occurrence networks of both bacterial and fungal community became more complex,whichmight be due to the variation of microbial sources.Furthermore,Mantel test and correlation analysis showed that air pollutants also partly contributed to microbial alterations.Airborne fungal community was more affected by air pollutants than bacterial community.Notably,some human pathogens like Nigrospora and Arthrinium were negatively correlated with air pollutants.Overall,our study highlighted the more impacts of anthropogenic activities on airborne fungal community than bacterial community and advanced the understanding of associations between anthropogenic activities and AM.展开更多
Groundwater is the major source of fresh water,and it performs a crucial role in maintaining ecosystems and adapting humans to climate variation.Due to excessive reliance on groundwater in some regions,the amount of g...Groundwater is the major source of fresh water,and it performs a crucial role in maintaining ecosystems and adapting humans to climate variation.Due to excessive reliance on groundwater in some regions,the amount of groundwater being consumed is higher than the recharge,which leads to a durative decline of groundwater level.This study analyzed the spatiotemporal variability in groundwater storage(GWS)in China.And the possible drivers of observed GWS changes were also identified.GWS level displayed large regional disparities with higher reserves in the Yangtze River Basin and Songhua River Basin.Temporally,GWS level showed decreasing trends in the North China Plain region,Yellow River Basin,Inner Mongolia Plateau and Junggar Basin.And,GWS showed a significant increase in the Tibetan Plateau and Songhua River Basin.Without considering the impact of human activities,groundwater reserves are also showing a decreasing trend in future climate scenarios in most of the 15 zones.Contribution analysis of driving forces on the basis of the percentages of standardized coefficient(r)suggested that the variations of GWS were largely controlled by anthropogenic activities with the contribution proportions of 35.43%-73.37%.And the contribution proportions of natural drivers accounted for 26.63%-64.62%,with the key factors of precipitation,temperature and vegetation cover.The results would help to formulate sustainable strategies for managing groundwater resource.展开更多
Carbonyl sulfide(COS)is an effective tracer for estimating Gross Primary Productivity(GPP)in the carbon cycle.As the largest contribution to the atmosphere,anthropogenic COS emissions must be accurately quantified.In ...Carbonyl sulfide(COS)is an effective tracer for estimating Gross Primary Productivity(GPP)in the carbon cycle.As the largest contribution to the atmosphere,anthropogenic COS emissions must be accurately quantified.In this study,an anthropogenic COS emission inventory from 2015 to 2021 was constructed by applying the bottom-up approach based on activity data from emission sources.China’s anthropogenic COS emissions increased from approximately 171 to 198 Gg S yr^(-1)from 2015-2021,differing from the trends of other pollutants.Despite an initial decline in COS emissions across sectors during the early stage of the COVID-19 pandemic,a rapid rebound in emissions occurred following the resumption of economic activities.In 2021,industrial sources,coal combustion,agriculture and vehicle exhaust accounted for 76.8%,12.3%,10.5%and 0.4%of total COS emissions,respectively.The aluminum industry was the primary COS emitter among industrial sources,contributing40.7% of total emissions.Shandong,Shanxi,and Zhejiang were the top three provinces in terms of anthropogenic COS emissions,reaching 39,21 and 17 Gg S yr-1,respectively.Provincial-level regions(hereafter province)with high COS emissions are observed mainly in the eastern and coastal regions of China,which,together with the wind direction,helps explain the pattern of high COS concentrations in the Western Pacific Ocean in winter.The Green Contribution Coefficient of COS(GCCCOS)was used to assess the relationship between GDP and COS emissions,highlighting the disparity between GDP and COS contributions to green development.As part of this analysis,relevant recommendations are proposed to address this disparity.The COS emission inventory in our study can be used as input for the Sulfur Transport and Deposition Model(STEM),reducing uncertainties in the atmospheric COS source?sink budget and promoting understanding of the atmosphere sulfur cycle.展开更多
Climate change is a natural phenomenon.Over the past billions of years,Earth’s climate has experienced many ice and warm periods.These changes have created various environments,directly benefiting and disadvantaging ...Climate change is a natural phenomenon.Over the past billions of years,Earth’s climate has experienced many ice and warm periods.These changes have created various environments,directly benefiting and disadvantaging certain species,eventually leding to extinction and evolutionary diversification through natural selection.However,rapid and drastic changes in Earth’s climate could be destructive and may lead to mass extinction.It is generally believed that four of the five mass extinction events were caused by drastic changes in the level of atmospheric greenhouse gases.In the recent period(the Anthropocene epoch),when human activi-ties began to significantly impact the Earth’s climate,numerous pieces of scientific evidence indicate that anthropogenic activities are associated with the extinction of plants and animals and may lead to the sixth mass extinction.However,some scientists deny the pos-sibility of the 6th mass extinction.Therefore,there is an urgent need to comprehensively review the impact of anthropogenic global warming on our natural environment.This article reviews the scientific evidence of the synergistic impact and chain effects of anthro-pogenic global warming on ecosystems and living organisms on Earth.It earnestly attempts to summarize relevant data published for specific research questions to improve the understanding of diverse evidence.This helps clarify the current state of research and rai-ses public awareness of the impact of anthropogenic global warming on all stakeholders on Earth.展开更多
The Pearl River Delta(PRD)region has been identified as a significant hotspot of wet ammonium deposition.However,the absence of long-term monitoring data in the area hinders the comprehension of the historical trends ...The Pearl River Delta(PRD)region has been identified as a significant hotspot of wet ammonium deposition.However,the absence of long-term monitoring data in the area hinders the comprehension of the historical trends and changes in wet NH_(4)^(+)-N deposition in response to emissions,which interferes with the ability to make effective decisions.This study has analyzed the long-term trends of wet NH_(4)^(+)-N deposition flux and has quantified the effect of anthropogenic emissions and meteorological factors at a typical urban site and a typical forest site in the PRD region from 2009 to 2020.It revealed a significant decreasing trend in wet NH_(4)^(+)-N flux in both the typical urban and forest areas of the PRD region,at-6.2%/year(p<0.001)and-3.3%/year(p<0.001),respectively.Anthropogenic emissions are thought to have contributed 47%–57%of the wet NH_(4)^(+)-N deposition trend over the past 12 years compared to meteorological factors.Meteorological conditions dominated the interannual fluctuations in wet NH_(4)^(+)-N deposition with an absolute contribution of 46%–52%,while anthropogenic emissions change alone explained 10%–31%.NH_(3)emissions have the greatest impact on the urban area among anthropogenic emission factors,while SO_(2)emissions have the greatest impact on the forest area.Additionally,precipitation was identified as the primary meteorological driver for both sites.Our findings also imply that the benefits of NH_(3)emissions reductions might not immediately emerge due to interference from weather-related factors.展开更多
An evidence-based control strategy for emission reduction of VOC sources can effectively solve the regional PM2.5and O3compound pollution in China.We estimated the anthropogenic VOC emission inventory in China in 2018...An evidence-based control strategy for emission reduction of VOC sources can effectively solve the regional PM2.5and O3compound pollution in China.We estimated the anthropogenic VOC emission inventory in China in 2018 and established a source profile database containing 129 sources based on localized detection and the latest research results.Then,the distribution of the ozone formation potential(OFP)and secondary organic aerosol formation potential(SOAFP)for emission sources was analyzed.Moreover,priority control routes for VOC emission sources were proposed for different periods.Anthropogenic VOC emissions in China reached 27,211.8 Gg in 2018,and small passenger cars,industrial protective coatings,biomass burning,heavy trucks,printing,asphalt paving,oil storage and transportation,coking,and oil refining were the main contributors.Industrial protective coatings,small passenger cars,and biomass burning all contributed significantly to OFP and SOAFP.Priority in emission reduction control should be given to industrial protective coatings,small passenger cars,heavy trucks,coking,printing,asphalt paving,chemical fibers,and basic organic chemical sources over the medium and long term in China.In addition,the priority control route for VOC emission sources should be adjusted according to the variations in VOC emission characteristics and regional differences,so as to obtain the maximum environmental benefits.展开更多
Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may...Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management.展开更多
Urbanization induced by human activities presents both challenges and adaptive opportunities for wildlife.One notable impact of urban sprawl is the vast amount of waste it produces,which has discernible effects on wil...Urbanization induced by human activities presents both challenges and adaptive opportunities for wildlife.One notable impact of urban sprawl is the vast amount of waste it produces,which has discernible effects on wildlife.Interestingly,an emerging trend has been observed that birds are incorporating anthropogenic materials into their nests.However,the relationship between anthropogenic nesting materials(ANMs)and the reproductive performance of urban birds is unclear.In this study,we investigated the relationship between the incorporation of ANMs into nests and the reproductive performance of Chinese Bulbuls(Pycnonotus sinensis)by monitoring and collecting data on 136 breeding nests in Hangzhou,China.We gathered data on seven reproductive traits of Chinese Bulbuls,including laying date,incubation period,nestling period,clutch size,egg volume,hatching success rate,and fledging success rate.We then calculated the urbanization synthetic index as a measure of the level of urbanization and examined its relationship with the proportion and weight of ANMs.Through examination of nest components,we observed significant increase in the proportion and weight of ANMs with the urbanization synthetic index.Notably,we found a higher hatching success rate of Chinese Bulbuls with an increasing proportion of ANMs.However,the inclusion of ANMs in nests was not correlated with other reproductive traits of Chinese Bulbuls.Overall,the use of ANMs by Chinese Bulbuls is consistent with the adaptive hypothesis and the availability hypothesis.Further studies should use controlled experiments to investigate the impact of ANMs on avian reproductive success.展开更多
Understanding the relationship between modern pollen and vegetation is crucial for interpreting fossil pollen records and assessing human impact on the environment,both of which are essential for effective environment...Understanding the relationship between modern pollen and vegetation is crucial for interpreting fossil pollen records and assessing human impact on the environment,both of which are essential for effective environmental management strategies.Despite numerous studies on fossil pollen records in the Rif landscape,research specifically focusing on modern pollen and its implications for understanding human impact on the natural landscape is notably lacking.This paper presents novel anthropogenic pollen indicators for the Rif Mountains and seeks to evaluate the gradients of human impact on the southern Mediterranean landscape.We employed a combination of modern pollen analysis,vegetation survey,and ordination techniques,incorporating various environmental and land-use variables.Canonical correspondence analysis(CCA)allowed us to evaluate the relationships between pollen types and environmental variables,helping us identify key anthropogenic pollen indicators associated with land use and human activities:Poaceae,Cannabist,Olea-t,and Asteraceae for cultivation;Brassicaceae,Genista-t,Poaceae,Asteraceae and Plantago-t,for grazing;Apiaceae,Urtica-t and Genista-t for slashing and burning.Additionally,an anthropogenic index score(AIS)was calculated for each sampled location.Correspondence analysis(CA)was then used to correlate each specific pollen type with levels of human impact as follows(a)low(e.g.,Cedrus atlantica-t,Quercus canariensis-t),(b)moderate(e.g.,Erica-t,Arbutus unedo-t,Eucalyptus-t),and(c)high(e.g.,Cannabis-t,Brassicaceae,Olea-t,Nicotiana-t).This paper enhances our comprehension of land-use dynamics and impact levels,providing essential insights for evaluating anthropogenic impact trends and human-induced changes in the Rif Mountains landscape.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
Anthropogenic noise can affect a number of behavioral,physiological,and ecological aspects of animals from major taxonomic groups,raising serious conservation concerns.For example,noise pollution impacts communicative...Anthropogenic noise can affect a number of behavioral,physiological,and ecological aspects of animals from major taxonomic groups,raising serious conservation concerns.For example,noise pollution impacts communicative behavior and perception of signals,movements and distribution,as well as predator–prey interactions,such as hunting success or predator detection and predation risk assessment.We have carried out an experimental playback study,in which we investigated whether exposure to anthropogenic noise(sound of a tractor)distracts free-ranging barn swallows Hirundo rustica from paying attention to an approaching human“predator”(the“cognitive distraction”hypothesis),or whether noise leads to increased responsiveness to this“predator”(the“increased threat”hypothesis).The subjects were male barn swallows attending their breeding territories during the time when the females were incubating.We found that barn swallow males initiated fight at signifcantly greater distances to the approaching human“predator”in the noise treatment than during the quiet control trials.These results suggest that anthropogenic noise causes increased vigilance and reactivity rather than a distraction,enabling birds to avoid the“predator”more quickly.We further discuss the mechanism behind the increased alertness in response to noise and contrast the“increased threat”mechanism,usually tested in previous studies,with an alternative“cognitive sensitization”mechanism.展开更多
Trace metals emitted from human activities may have penetrated into the deep seas,and the underlying control mechanisms remain poorly understood.Sinking particles collected by moored time-series sediment traps from th...Trace metals emitted from human activities may have penetrated into the deep seas,and the underlying control mechanisms remain poorly understood.Sinking particles collected by moored time-series sediment traps from the northern South China Sea(NSCS)basin showed significant enrichment of anthropogenic aerosol Pb relative to lithogenic Fe.Total mass flux was primarily driven by seasonal primary production,and significant positive correlations were found between Pb/Fe flux and major biogenic components,indicating the crucial role of the biological pump in Pb/Fe scavenging in the water column.Notably,Pb exhibited 30−50 times higher affinity to biogenic components than Fe.A comparison was made between the enrichment factors of Fe and Pb in aerosols,euphotic particles,and sinking particles,which revealed that Pb exhibited significantly higher particle reactivity than Fe.This higher particle reactivity may encompass processes such as adsorption/desorption,bioaccumulation and decomposition release.The differential scavenging behavior of Pb suggested that the majority of Pb was rapidly scavenged in the euphotic zone and was preferentially released for accumulation in the twilight zone.This accumulation may further outflow through the Luzon Strait and result in the high dissolved Pb concentration observed in the subsurface water columns in both the NSCS and western Pacific Ocean.The rest of anthropogenic Pb in sinking particles tended to penetrate into deeper water layers and continue to be released below the twilight zone.These findings provide new insights into the biogeochemical cycling of trace metals originating from anthropogenic aerosols in marginal seas and serve as an example of the fate of other anthropogenic atmospheric pollutants.展开更多
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper...Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .展开更多
Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined p...Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.展开更多
Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum produ...Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum production, fabrication and manufacture, use and reclamation. Based on the investigation on the 2003-2007 aluminum cycles in China, a number of changes can be found. For instance, resources self-support ratio (RSR) in alumina production dropped from 95.42%to 55.50%, while RSR in the aluminum production increased from 52.45%to 79.25%. However, RSR in the Chinese aluminum industry leveled off at 50%in the period of 2003-2007. The respective use ratios of domestic and imported aluminum scrap in the aluminum industry of 2007 were 5.38% and 9.40%. In contrast, both the net imported Al-containing resources and the lost quantity of Al-containing materials in aluminum cycle increased during the same period, as well as the net increased quantity of Al-containing materials in social stock and recycled Al-scrap. Proposals for promoting aluminum cycle were put forward. The import/export policy and reducing the loss of Al-containing materials for the aluminum industry in China in the future were discussed.展开更多
Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the e...Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the environment and of how services are formed by human activities. We compared lead’s anthropogenic and biogeochemical cycles and found that the services, pathways, and changes in form requiring the most attention. We traced lead through its life cycle and identified the changes in its functions, forms, and locations by examining technology and engineering information. Lead ore and scrap were the two main anthropogenic sources of lead. When lead provides human services, its main functions included the storage and delivery of electricity, anti-corrosion treatments, and radiation protection; the main forms of lead in these products were Pb, PbO2 and PbSO4, and the main location changed from lithosphere in central China to regions in eastern China.展开更多
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthro...Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.展开更多
基金jointed supported by the National Natural Science Foundation of China(Nos.41920104007,41731284)。
文摘With the rapid urbanization process,ground collapses caused by anthropogenic activities occur frequently.Accurate susceptibility mapping is of great significance for disaster prevention and control.In this study,1198 ground collapse cases in Shenzhen from 2017 to 2020 were collected.Eight effective factors(elevation,relief,clay proportion,average annual precipitation,distance from water,land use type,building density,and road density)were selected to construct the evaluation index system.Ground collapse susceptibility was analyzed and mapped using the normalized frequency ratio(NFR),logistic regression(LR),and NFR-LR coupling models.Finally,the result rationality and performance of the three models were compared through frequency ratio(FR)and ROC curve.The results indicate that all three models can effectively evaluate the ground collapse susceptibility(AUC>0.7),and the NFR-LR model result is more rational and has the best performance(AUC=0.791).The very high and high susceptibility zones cover a total area of 545.68 km^(2) and involve Nanshan,Luohu,and Futian District,as well as some areas of Baoan,Guangming,and Longgang District.The ground collapses in Shenzhen mainly occurred in the built-up areas,and the greater intensity of anthropogenic activities,the more susceptible to the disaster.
基金supported by the University of Bucharest through the“People and trees”CIVIS project.
文摘Cultural ecosystem services(CES)provided by urban green infrastructure are essential for enhancing social well-being and resilience.Identifying and mapping CES at a local scale is crucial for informed land-use decisions that align with citizens'perceptions.However,research on ecosystem services in Romania has been limited,with a notable gap in the assessment of CES provided by urban green spaces.This study is the first to focus on Băneasa Forest,the only urban forest in Bucharest,which serves as a vital recreational area for thousands of residents and visitors.For the first time in Romania,this research uses a web-based Participatory GIS survey to collect spatially referenced data.The survey,which combines questionnaires and mapping exercises,allows us to produce high-resolution CES maps based on 816 responses.The results reveal that the forest's natural characteristics are perceived as the primary contributors to CES.These findings are valuable for urban planners,as they highlight the needs and expectations of forest visitors,promote conservation efforts,and foster collaboration to prevent conflicts.Alongside factors frequently discussed in the literature,such as age and accessibility,the percentage of green space in residents'neighborhoods emerges as a significant factor influencing CES preferences.This insight presents a novel contribution to the literature,being of particular importance for urban planners and policymakers,as it underscores the need to consider not just the green space within parks and forests,but also the broader context of surrounding neighborhoods when planning for CES.Understanding that the availability of nearby green space influences residents'CES preferences can guide more effective strategies to enhance access to CES in urban areas,both in Bucharest and elsewhere.This is especially relevant in the face of climate change and other emerging challenges,which are likely to increase the demand for CES in the future.
基金supported by the National Natural Science Foundation of China(No.42207128)the Key Research Projects of Natural Science in Colleges and Universities of Anhui Province(No.KJ2021A0091)the Natural Science Foundation of Anhui Province(No.2008085MD111)。
文摘PM_(2.5)and O_(3) are two major issues hindering air quality improvement in China.However,the response of these two pollutants to anthropogenic emission variations in the real atmosphere was not yet well understood.Here,we selected the short-term epidemic lockdown in Wuhu in 2022 as a case study and evaluated the impacts of meteorology and anthropogenic emission on PM_(2.5)and O_(3) using field observations combined with machine learning algorithms.The results showed that NO_(2) observed during the lockdown was 32.2±8.1μg/m^(3),10.1%lower than before the lockdown,and that NO_(2) continued to decrease by 19.2%after the lockdown.Notably,both PM_(2.5)and O_(3) concentrations were higher during the lockdown than before and after the lockdown.Random forest model revealed that meteorological conditions during the lockdown increased PM_(2.5)and O_(3) by 8.7%and 24.2%,respectively,but decreased NO_(2) by 6.4%.Atmospheric pressure and relative humidity were the main meteorological variables influencing PM_(2.5)and O_(3) variations,respectively.Scenario simulation analysis uncovered that anthropogenic emission reduction caused by the lockdown reduced NO_(2) by 19.7%,but increased PM_(2.5)and O_(3) by 6.3%and 26.8%,respectively.This was mainly due to the weakening titration effect of nitrogen oxides and enhanced atmospheric oxidation capacity,further increasing O_(3) and secondary PM_(2.5)production.Our results revealed that NO_(2) in Wuhu decreased significantly due to short-term epidemic lockdown,but PM_(2.5)and O_(3) pollution were not effectively reduced.To continuously improve future urban air quality,joint reductions in emissions from multiple anthropogenic sources and multiple pollutants are required.
基金supported by the National Natural Science Foundation of China(No.31900106)the East China University of Technology Practical Teaching Construction Project(No.DHSY-202261)。
文摘Airborne microorganisms(AM)have significant environmental and health implications.Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM.However,the knowledge of AM with anthropogenic activities has not reach a consensus.In this study,we took advantage of the dramatic decline of outdoor anthropogenic activities resulting from COVID-19 lockdown to reveal their associations.We collected airborne particulate matter before and during the lockdown period in two cities.The results showed that it was fungal diversity and communities but not bacteria obviously different between pre-lockdownand lockdown samples,suggesting that airborne fungiwere more susceptible to anthropogenic activities than bacteria.However,after the implementation of lockdown,the co-occurrence networks of both bacterial and fungal community became more complex,whichmight be due to the variation of microbial sources.Furthermore,Mantel test and correlation analysis showed that air pollutants also partly contributed to microbial alterations.Airborne fungal community was more affected by air pollutants than bacterial community.Notably,some human pathogens like Nigrospora and Arthrinium were negatively correlated with air pollutants.Overall,our study highlighted the more impacts of anthropogenic activities on airborne fungal community than bacterial community and advanced the understanding of associations between anthropogenic activities and AM.
基金funded by the China Geological Survey Program(No.DD20230075)the key project supported by the National Natural Science Foundation of China(No.U21A20155)。
文摘Groundwater is the major source of fresh water,and it performs a crucial role in maintaining ecosystems and adapting humans to climate variation.Due to excessive reliance on groundwater in some regions,the amount of groundwater being consumed is higher than the recharge,which leads to a durative decline of groundwater level.This study analyzed the spatiotemporal variability in groundwater storage(GWS)in China.And the possible drivers of observed GWS changes were also identified.GWS level displayed large regional disparities with higher reserves in the Yangtze River Basin and Songhua River Basin.Temporally,GWS level showed decreasing trends in the North China Plain region,Yellow River Basin,Inner Mongolia Plateau and Junggar Basin.And,GWS showed a significant increase in the Tibetan Plateau and Songhua River Basin.Without considering the impact of human activities,groundwater reserves are also showing a decreasing trend in future climate scenarios in most of the 15 zones.Contribution analysis of driving forces on the basis of the percentages of standardized coefficient(r)suggested that the variations of GWS were largely controlled by anthropogenic activities with the contribution proportions of 35.43%-73.37%.And the contribution proportions of natural drivers accounted for 26.63%-64.62%,with the key factors of precipitation,temperature and vegetation cover.The results would help to formulate sustainable strategies for managing groundwater resource.
基金National Natural Science Foundation of China,No.42250205“CUG Scholar”Scientific Research Funds at China University of Geosciences,No.2019004+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA23100202Scientific Research Foundation of China University of Geosciences,No.162301192642。
文摘Carbonyl sulfide(COS)is an effective tracer for estimating Gross Primary Productivity(GPP)in the carbon cycle.As the largest contribution to the atmosphere,anthropogenic COS emissions must be accurately quantified.In this study,an anthropogenic COS emission inventory from 2015 to 2021 was constructed by applying the bottom-up approach based on activity data from emission sources.China’s anthropogenic COS emissions increased from approximately 171 to 198 Gg S yr^(-1)from 2015-2021,differing from the trends of other pollutants.Despite an initial decline in COS emissions across sectors during the early stage of the COVID-19 pandemic,a rapid rebound in emissions occurred following the resumption of economic activities.In 2021,industrial sources,coal combustion,agriculture and vehicle exhaust accounted for 76.8%,12.3%,10.5%and 0.4%of total COS emissions,respectively.The aluminum industry was the primary COS emitter among industrial sources,contributing40.7% of total emissions.Shandong,Shanxi,and Zhejiang were the top three provinces in terms of anthropogenic COS emissions,reaching 39,21 and 17 Gg S yr-1,respectively.Provincial-level regions(hereafter province)with high COS emissions are observed mainly in the eastern and coastal regions of China,which,together with the wind direction,helps explain the pattern of high COS concentrations in the Western Pacific Ocean in winter.The Green Contribution Coefficient of COS(GCCCOS)was used to assess the relationship between GDP and COS emissions,highlighting the disparity between GDP and COS contributions to green development.As part of this analysis,relevant recommendations are proposed to address this disparity.The COS emission inventory in our study can be used as input for the Sulfur Transport and Deposition Model(STEM),reducing uncertainties in the atmospheric COS source?sink budget and promoting understanding of the atmosphere sulfur cycle.
基金supported by the Scientific Research Capacity Building Project for Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi(No.23-026-271)the Key Research Base of Humanities and Social Sciences in Guangxi Universities‘Beibu Gulf Ocean Development Research Center’the Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi.
文摘Climate change is a natural phenomenon.Over the past billions of years,Earth’s climate has experienced many ice and warm periods.These changes have created various environments,directly benefiting and disadvantaging certain species,eventually leding to extinction and evolutionary diversification through natural selection.However,rapid and drastic changes in Earth’s climate could be destructive and may lead to mass extinction.It is generally believed that four of the five mass extinction events were caused by drastic changes in the level of atmospheric greenhouse gases.In the recent period(the Anthropocene epoch),when human activi-ties began to significantly impact the Earth’s climate,numerous pieces of scientific evidence indicate that anthropogenic activities are associated with the extinction of plants and animals and may lead to the sixth mass extinction.However,some scientists deny the pos-sibility of the 6th mass extinction.Therefore,there is an urgent need to comprehensively review the impact of anthropogenic global warming on our natural environment.This article reviews the scientific evidence of the synergistic impact and chain effects of anthro-pogenic global warming on ecosystems and living organisms on Earth.It earnestly attempts to summarize relevant data published for specific research questions to improve the understanding of diverse evidence.This helps clarify the current state of research and rai-ses public awareness of the impact of anthropogenic global warming on all stakeholders on Earth.
基金supported by the National Natural Science Foundation(Nos.42275107,42121004,and 42375109)the National Key Research and Development Plan(No.2023YFC3706202)+1 种基金the Foundational and Applied Basic Research in Guangzhou in 2023(No.2023A04J0251)the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(No.2019B121205004).
文摘The Pearl River Delta(PRD)region has been identified as a significant hotspot of wet ammonium deposition.However,the absence of long-term monitoring data in the area hinders the comprehension of the historical trends and changes in wet NH_(4)^(+)-N deposition in response to emissions,which interferes with the ability to make effective decisions.This study has analyzed the long-term trends of wet NH_(4)^(+)-N deposition flux and has quantified the effect of anthropogenic emissions and meteorological factors at a typical urban site and a typical forest site in the PRD region from 2009 to 2020.It revealed a significant decreasing trend in wet NH_(4)^(+)-N flux in both the typical urban and forest areas of the PRD region,at-6.2%/year(p<0.001)and-3.3%/year(p<0.001),respectively.Anthropogenic emissions are thought to have contributed 47%–57%of the wet NH_(4)^(+)-N deposition trend over the past 12 years compared to meteorological factors.Meteorological conditions dominated the interannual fluctuations in wet NH_(4)^(+)-N deposition with an absolute contribution of 46%–52%,while anthropogenic emissions change alone explained 10%–31%.NH_(3)emissions have the greatest impact on the urban area among anthropogenic emission factors,while SO_(2)emissions have the greatest impact on the forest area.Additionally,precipitation was identified as the primary meteorological driver for both sites.Our findings also imply that the benefits of NH_(3)emissions reductions might not immediately emerge due to interference from weather-related factors.
基金financially supported by the National Natural Science Foundation of China (No.51638001)National Joint Center for Air Pollution Prevention and Control (No.DQGG202010)。
文摘An evidence-based control strategy for emission reduction of VOC sources can effectively solve the regional PM2.5and O3compound pollution in China.We estimated the anthropogenic VOC emission inventory in China in 2018 and established a source profile database containing 129 sources based on localized detection and the latest research results.Then,the distribution of the ozone formation potential(OFP)and secondary organic aerosol formation potential(SOAFP)for emission sources was analyzed.Moreover,priority control routes for VOC emission sources were proposed for different periods.Anthropogenic VOC emissions in China reached 27,211.8 Gg in 2018,and small passenger cars,industrial protective coatings,biomass burning,heavy trucks,printing,asphalt paving,oil storage and transportation,coking,and oil refining were the main contributors.Industrial protective coatings,small passenger cars,and biomass burning all contributed significantly to OFP and SOAFP.Priority in emission reduction control should be given to industrial protective coatings,small passenger cars,heavy trucks,coking,printing,asphalt paving,chemical fibers,and basic organic chemical sources over the medium and long term in China.In addition,the priority control route for VOC emission sources should be adjusted according to the variations in VOC emission characteristics and regional differences,so as to obtain the maximum environmental benefits.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research program(2019QZKK0301)the Natural Science Foundation of Xizang Autonomous Region(XZ202301ZR0027G).
文摘Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management.
基金supported by the National Natural Science Foundation of China(32271743,31071908).
文摘Urbanization induced by human activities presents both challenges and adaptive opportunities for wildlife.One notable impact of urban sprawl is the vast amount of waste it produces,which has discernible effects on wildlife.Interestingly,an emerging trend has been observed that birds are incorporating anthropogenic materials into their nests.However,the relationship between anthropogenic nesting materials(ANMs)and the reproductive performance of urban birds is unclear.In this study,we investigated the relationship between the incorporation of ANMs into nests and the reproductive performance of Chinese Bulbuls(Pycnonotus sinensis)by monitoring and collecting data on 136 breeding nests in Hangzhou,China.We gathered data on seven reproductive traits of Chinese Bulbuls,including laying date,incubation period,nestling period,clutch size,egg volume,hatching success rate,and fledging success rate.We then calculated the urbanization synthetic index as a measure of the level of urbanization and examined its relationship with the proportion and weight of ANMs.Through examination of nest components,we observed significant increase in the proportion and weight of ANMs with the urbanization synthetic index.Notably,we found a higher hatching success rate of Chinese Bulbuls with an increasing proportion of ANMs.However,the inclusion of ANMs in nests was not correlated with other reproductive traits of Chinese Bulbuls.Overall,the use of ANMs by Chinese Bulbuls is consistent with the adaptive hypothesis and the availability hypothesis.Further studies should use controlled experiments to investigate the impact of ANMs on avian reproductive success.
文摘Understanding the relationship between modern pollen and vegetation is crucial for interpreting fossil pollen records and assessing human impact on the environment,both of which are essential for effective environmental management strategies.Despite numerous studies on fossil pollen records in the Rif landscape,research specifically focusing on modern pollen and its implications for understanding human impact on the natural landscape is notably lacking.This paper presents novel anthropogenic pollen indicators for the Rif Mountains and seeks to evaluate the gradients of human impact on the southern Mediterranean landscape.We employed a combination of modern pollen analysis,vegetation survey,and ordination techniques,incorporating various environmental and land-use variables.Canonical correspondence analysis(CCA)allowed us to evaluate the relationships between pollen types and environmental variables,helping us identify key anthropogenic pollen indicators associated with land use and human activities:Poaceae,Cannabist,Olea-t,and Asteraceae for cultivation;Brassicaceae,Genista-t,Poaceae,Asteraceae and Plantago-t,for grazing;Apiaceae,Urtica-t and Genista-t for slashing and burning.Additionally,an anthropogenic index score(AIS)was calculated for each sampled location.Correspondence analysis(CA)was then used to correlate each specific pollen type with levels of human impact as follows(a)low(e.g.,Cedrus atlantica-t,Quercus canariensis-t),(b)moderate(e.g.,Erica-t,Arbutus unedo-t,Eucalyptus-t),and(c)high(e.g.,Cannabis-t,Brassicaceae,Olea-t,Nicotiana-t).This paper enhances our comprehension of land-use dynamics and impact levels,providing essential insights for evaluating anthropogenic impact trends and human-induced changes in the Rif Mountains landscape.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金This study was supported by the Cardinal Stefan Wyszyhski University in Warsaw(grant to P.M.).
文摘Anthropogenic noise can affect a number of behavioral,physiological,and ecological aspects of animals from major taxonomic groups,raising serious conservation concerns.For example,noise pollution impacts communicative behavior and perception of signals,movements and distribution,as well as predator–prey interactions,such as hunting success or predator detection and predation risk assessment.We have carried out an experimental playback study,in which we investigated whether exposure to anthropogenic noise(sound of a tractor)distracts free-ranging barn swallows Hirundo rustica from paying attention to an approaching human“predator”(the“cognitive distraction”hypothesis),or whether noise leads to increased responsiveness to this“predator”(the“increased threat”hypothesis).The subjects were male barn swallows attending their breeding territories during the time when the females were incubating.We found that barn swallow males initiated fight at signifcantly greater distances to the approaching human“predator”in the noise treatment than during the quiet control trials.These results suggest that anthropogenic noise causes increased vigilance and reactivity rather than a distraction,enabling birds to avoid the“predator”more quickly.We further discuss the mechanism behind the increased alertness in response to noise and contrast the“increased threat”mechanism,usually tested in previous studies,with an alternative“cognitive sensitization”mechanism.
基金The National Natural Science Foundation of China under contract No.42106045the Scientific Research Fund of the Second Institute of Oceanography,MNR under contract No.JB2208+2 种基金the National Science Foundation for Post-doctoral Scientists of China under contract No.2021M703793the Project Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP207the National Natural Science Foundation of China under contract No.42330412.
文摘Trace metals emitted from human activities may have penetrated into the deep seas,and the underlying control mechanisms remain poorly understood.Sinking particles collected by moored time-series sediment traps from the northern South China Sea(NSCS)basin showed significant enrichment of anthropogenic aerosol Pb relative to lithogenic Fe.Total mass flux was primarily driven by seasonal primary production,and significant positive correlations were found between Pb/Fe flux and major biogenic components,indicating the crucial role of the biological pump in Pb/Fe scavenging in the water column.Notably,Pb exhibited 30−50 times higher affinity to biogenic components than Fe.A comparison was made between the enrichment factors of Fe and Pb in aerosols,euphotic particles,and sinking particles,which revealed that Pb exhibited significantly higher particle reactivity than Fe.This higher particle reactivity may encompass processes such as adsorption/desorption,bioaccumulation and decomposition release.The differential scavenging behavior of Pb suggested that the majority of Pb was rapidly scavenged in the euphotic zone and was preferentially released for accumulation in the twilight zone.This accumulation may further outflow through the Luzon Strait and result in the high dissolved Pb concentration observed in the subsurface water columns in both the NSCS and western Pacific Ocean.The rest of anthropogenic Pb in sinking particles tended to penetrate into deeper water layers and continue to be released below the twilight zone.These findings provide new insights into the biogeochemical cycling of trace metals originating from anthropogenic aerosols in marginal seas and serve as an example of the fate of other anthropogenic atmospheric pollutants.
文摘Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .
文摘Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.
基金Projects (71003018,71373003) supported by the National Natural Science Foundation of ChinaProjects (N110402003,N120302004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (13YJCZH172) supported by the Ministry of Education of China of Humanities and Social Sciences
文摘Anthropogenic aluminum cycle in China was analyzed by the aluminum flow diagram based on the life cycle of aluminum products. The whole anthropogenic aluminum cycle consists of four stages: alumina and aluminum production, fabrication and manufacture, use and reclamation. Based on the investigation on the 2003-2007 aluminum cycles in China, a number of changes can be found. For instance, resources self-support ratio (RSR) in alumina production dropped from 95.42%to 55.50%, while RSR in the aluminum production increased from 52.45%to 79.25%. However, RSR in the Chinese aluminum industry leveled off at 50%in the period of 2003-2007. The respective use ratios of domestic and imported aluminum scrap in the aluminum industry of 2007 were 5.38% and 9.40%. In contrast, both the net imported Al-containing resources and the lost quantity of Al-containing materials in aluminum cycle increased during the same period, as well as the net increased quantity of Al-containing materials in social stock and recycled Al-scrap. Proposals for promoting aluminum cycle were put forward. The import/export policy and reducing the loss of Al-containing materials for the aluminum industry in China in the future were discussed.
基金Project(41171361)supported by the National Natural Science Foundation of China(General Program)
文摘Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the environment and of how services are formed by human activities. We compared lead’s anthropogenic and biogeochemical cycles and found that the services, pathways, and changes in form requiring the most attention. We traced lead through its life cycle and identified the changes in its functions, forms, and locations by examining technology and engineering information. Lead ore and scrap were the two main anthropogenic sources of lead. When lead provides human services, its main functions included the storage and delivery of electricity, anti-corrosion treatments, and radiation protection; the main forms of lead in these products were Pb, PbO2 and PbSO4, and the main location changed from lithosphere in central China to regions in eastern China.
基金This work was supported by National Natural Science Foundation of China(Grant No.91644214)Youth Innovation Program of Universities in Shandong Province(Grant No.2019KJD007)Fundamental Research Fund of Shandong University(Grant No.2020QNQT012).
文摘Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.