CATIA V5R20 software was utilized to build up a three-dimensional solid model of inline four-cylinder gasoline engine crankshaft.The free modal analysis of the first six orders from the whole crankshaft model was carr...CATIA V5R20 software was utilized to build up a three-dimensional solid model of inline four-cylinder gasoline engine crankshaft.The free modal analysis of the first six orders from the whole crankshaft model was carried out based on TGrid algorithm by using ANSYS Workbench14.0software and the natural frequency and vibration modes were obtained.The reliability of the finite element model was verified by comparing with modal test result.This provides a reference for further design and optimization of the crankshaft.展开更多
This paper analyzes the structure and transmission principles of a modulation permanent magnet gear transmission. Its 3D data model is built based on the known optimized parameters from research team. Its structure of...This paper analyzes the structure and transmission principles of a modulation permanent magnet gear transmission. Its 3D data model is built based on the known optimized parameters from research team. Its structure of the harmonic response is analyzed and discussed under the software ANSYS. The displacement response and the initial 6 order response frequency and phase angle are obtained. The change rule of these responses is known under the forced vibration.展开更多
Making an analysis for vibration modal and frequency response of the lathe spindle,respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining,and the calculation result...Making an analysis for vibration modal and frequency response of the lathe spindle,respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining,and the calculation results are compared and analyzed,which verified the accuracy of ANSYS method. Numerical simulation and experimental results show that: Spindle in the first order and fifth order are prone to resonance,but did not reach resonance,the low order natural frequency have more effect than the high order natural frequency of the spindle vibration; by the experiments can conclude that the maximum vibration of the main shaft in the working state is mainly concentrated in the vicinity of its two ends,therefore,the improved bearing is an important way to reduce the vibration of the main shaft and ensure the machining accuracy,and the research results can provide a theoretical reference for the structural optimization design of the lathe.展开更多
Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the...Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the weak links which is an angle steel junction of side plate, feed inlet and the junction panel between the no-feed side plate and the bottom plate. Then, we carry out structural optimization. A streamlined method for optimum design of a vibration feeder is presented.展开更多
In the present study an idea of combination of fracture mechanics and Limit State Analysis is presented.The model of the“plastic hinges”is made by using theory of fracture mechanics.Analysis of a simple RC(reinforce...In the present study an idea of combination of fracture mechanics and Limit State Analysis is presented.The model of the“plastic hinges”is made by using theory of fracture mechanics.Analysis of a simple RC(reinforced concrete)structure by means of fracture mechanics is performed by taking into account crack development.Reinforcement plastification and nonlinear behavior of concrete are considered in the numerical model.Comparisons with a simple Limit State Analysis plastic hinge model are made.The numerical analysis is made by using ANSYS software product.This research is part of a project aimed at determining the maximum bending moment in a beam subjected to bending with the methods of fracture mechanics and the definition of a simplified formula specifying the one obtained by the Limit State Analysis.展开更多
In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from...In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.展开更多
In this paper,by using adequate stress-strain relationship,mesh elements,boundary conditions and loading conditions,the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic b...In this paper,by using adequate stress-strain relationship,mesh elements,boundary conditions and loading conditions,the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed.The behavior includes the moment-curvature and ovalization-curvature relationships.In addition,the calculated ovalizations at two different sections,middle and right cross-sections,are also included.Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis.It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical,ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.展开更多
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measur...The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.展开更多
In order to understand the vibration characteristic of system structure of electronic equipment cabinet within the particular vibration frequency,the finite element analysis software-ANSYS is used to simulate the test...In order to understand the vibration characteristic of system structure of electronic equipment cabinet within the particular vibration frequency,the finite element analysis software-ANSYS is used to simulate the tests of random vibrations of the cabinet system and obtain the isopleths graph of deformation and stress of the cabinet.It can confirm maximum of deformation and stress of the cabinet and position happened.Through more analysis of the frequency response curve,which can confirm harm- ful consequences random vibrations caused and weak link of the cabinet structure.The numerical simulation results are in good a- greement with the experimental results.It shows that this research provides an efficient method for the anti-seismic design and the dynamic optimization design.展开更多
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any po...This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands.展开更多
This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal ...This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.展开更多
A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without consi...A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.展开更多
In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec han...In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.展开更多
To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between ...To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.展开更多
Implicit and explicit analyses were examined with experimental work done by Razaqpur et al. In the experiment work, two 1000 × 1000 × 70 mm reinforced concrete slabs were constructed. The slabs were subjecte...Implicit and explicit analyses were examined with experimental work done by Razaqpur et al. In the experiment work, two 1000 × 1000 × 70 mm reinforced concrete slabs were constructed. The slabs were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg of ANFO located at a 3.0 m standoff. Blast wave characteristics, including incident and reflected pressures and reflected impulses were measured. The slabs were modeled by implicit and explicit analysis to study their behavior under blast load to compare their predicted and observed behavior. The post-blast damage and mode of failure of each slab were observed. It was concluded that explicit analysis provides better modeling than implicit analysis.展开更多
In-Vessel Retention (IVR) is one of the existing strategies of severe accident management of LWR, which intends to stabilize and isolate corium & fission products inside the reactor pressure vessel (RPV) and prima...In-Vessel Retention (IVR) is one of the existing strategies of severe accident management of LWR, which intends to stabilize and isolate corium & fission products inside the reactor pressure vessel (RPV) and primary containment structure. Since it has become an important safety objective for nuclear reactors, it is therefore needed to model and evaluate relevant phenomena of IVR strategy in assessing safety of nuclear power reactors. One of the relevant phenomena during accident progression in the oxidic pool is non-uniform high heat generation occurring at large scale. Consequently, direct experimental studies at these scales are not possible. The role computer codes and models are therefore important in order to transpose experimental results to reactor safety applications. In this paper, the state-of-the-art ANSYS FLUENT CFD code is used to simulate Non-uniform heat generation in the lower plenum by the application of Cartridge heating under severe accident conditions to derive the basic accident scenario. However, very few studies have been performed to simulate non-uniform decay heat generation by Cartridge heaters in a pool corresponding lower plenum of power reactor. The current investigation focuses on non-uniform heating in the fluid domain by Cartridge heaters, which has been done using ANSYS FLUENT CFD code by K-epsilon model. The computed results are based on qualitative assessment in the form of temperature and velocity contour and quantitative assessment in terms of temperature and heat flux distribution to assess the impact of heating method on natural convective fluid flow and heat transfer.展开更多
文摘CATIA V5R20 software was utilized to build up a three-dimensional solid model of inline four-cylinder gasoline engine crankshaft.The free modal analysis of the first six orders from the whole crankshaft model was carried out based on TGrid algorithm by using ANSYS Workbench14.0software and the natural frequency and vibration modes were obtained.The reliability of the finite element model was verified by comparing with modal test result.This provides a reference for further design and optimization of the crankshaft.
文摘This paper analyzes the structure and transmission principles of a modulation permanent magnet gear transmission. Its 3D data model is built based on the known optimized parameters from research team. Its structure of the harmonic response is analyzed and discussed under the software ANSYS. The displacement response and the initial 6 order response frequency and phase angle are obtained. The change rule of these responses is known under the forced vibration.
基金financially supported by Independent Innovation Research Fund of Wuhan University of Technology(No.2014-ND-B1-09)
文摘Making an analysis for vibration modal and frequency response of the lathe spindle,respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining,and the calculation results are compared and analyzed,which verified the accuracy of ANSYS method. Numerical simulation and experimental results show that: Spindle in the first order and fifth order are prone to resonance,but did not reach resonance,the low order natural frequency have more effect than the high order natural frequency of the spindle vibration; by the experiments can conclude that the maximum vibration of the main shaft in the working state is mainly concentrated in the vicinity of its two ends,therefore,the improved bearing is an important way to reduce the vibration of the main shaft and ensure the machining accuracy,and the research results can provide a theoretical reference for the structural optimization design of the lathe.
文摘Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the weak links which is an angle steel junction of side plate, feed inlet and the junction panel between the no-feed side plate and the bottom plate. Then, we carry out structural optimization. A streamlined method for optimum design of a vibration feeder is presented.
基金supplied by the National Science Fund under the contract № BH-296/24.
文摘In the present study an idea of combination of fracture mechanics and Limit State Analysis is presented.The model of the“plastic hinges”is made by using theory of fracture mechanics.Analysis of a simple RC(reinforced concrete)structure by means of fracture mechanics is performed by taking into account crack development.Reinforcement plastification and nonlinear behavior of concrete are considered in the numerical model.Comparisons with a simple Limit State Analysis plastic hinge model are made.The numerical analysis is made by using ANSYS software product.This research is part of a project aimed at determining the maximum bending moment in a beam subjected to bending with the methods of fracture mechanics and the definition of a simplified formula specifying the one obtained by the Limit State Analysis.
文摘In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.
文摘In this paper,by using adequate stress-strain relationship,mesh elements,boundary conditions and loading conditions,the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed.The behavior includes the moment-curvature and ovalization-curvature relationships.In addition,the calculated ovalizations at two different sections,middle and right cross-sections,are also included.Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis.It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical,ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.
基金The Key Project of the National Natural Science Foundation of China Under Grant No.50538020 the National Science Fund for Distinguished Young Scholars Under Grant No.50725828+2 种基金 the National Natural Science Foundation of China Under Grant No.50978056the National Natural Science Foundation of China for Young Scholars Under Grant No.50908046 the Ph.D.Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
文摘In order to understand the vibration characteristic of system structure of electronic equipment cabinet within the particular vibration frequency,the finite element analysis software-ANSYS is used to simulate the tests of random vibrations of the cabinet system and obtain the isopleths graph of deformation and stress of the cabinet.It can confirm maximum of deformation and stress of the cabinet and position happened.Through more analysis of the frequency response curve,which can confirm harm- ful consequences random vibrations caused and weak link of the cabinet structure.The numerical simulation results are in good a- greement with the experimental results.It shows that this research provides an efficient method for the anti-seismic design and the dynamic optimization design.
文摘This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands.
文摘This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.
基金National Natural Science Foundation of China(No.51175475)Natural Science Foundation of Zhejiang Province,China(No.LY14E050027)
文摘A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.
文摘In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.
文摘To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.
文摘Implicit and explicit analyses were examined with experimental work done by Razaqpur et al. In the experiment work, two 1000 × 1000 × 70 mm reinforced concrete slabs were constructed. The slabs were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg of ANFO located at a 3.0 m standoff. Blast wave characteristics, including incident and reflected pressures and reflected impulses were measured. The slabs were modeled by implicit and explicit analysis to study their behavior under blast load to compare their predicted and observed behavior. The post-blast damage and mode of failure of each slab were observed. It was concluded that explicit analysis provides better modeling than implicit analysis.
文摘In-Vessel Retention (IVR) is one of the existing strategies of severe accident management of LWR, which intends to stabilize and isolate corium & fission products inside the reactor pressure vessel (RPV) and primary containment structure. Since it has become an important safety objective for nuclear reactors, it is therefore needed to model and evaluate relevant phenomena of IVR strategy in assessing safety of nuclear power reactors. One of the relevant phenomena during accident progression in the oxidic pool is non-uniform high heat generation occurring at large scale. Consequently, direct experimental studies at these scales are not possible. The role computer codes and models are therefore important in order to transpose experimental results to reactor safety applications. In this paper, the state-of-the-art ANSYS FLUENT CFD code is used to simulate Non-uniform heat generation in the lower plenum by the application of Cartridge heating under severe accident conditions to derive the basic accident scenario. However, very few studies have been performed to simulate non-uniform decay heat generation by Cartridge heaters in a pool corresponding lower plenum of power reactor. The current investigation focuses on non-uniform heating in the fluid domain by Cartridge heaters, which has been done using ANSYS FLUENT CFD code by K-epsilon model. The computed results are based on qualitative assessment in the form of temperature and velocity contour and quantitative assessment in terms of temperature and heat flux distribution to assess the impact of heating method on natural convective fluid flow and heat transfer.