期刊文献+
共找到1,463篇文章
< 1 2 74 >
每页显示 20 50 100
基于ANNs耦合GA算法的煤层含气量预判
1
作者 贾宝山 尹彬 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期715-721,共7页
为了对煤层含气量进行有效分析,以实现煤层气可靠抽采及瓦斯灾害预防,提出了遗传算法(GA)优化人工神经网络(ANNs)煤层含气量的预判方法.GA算法通过对ANNs网络的权值及阈值的寻优,构建了基于ANNs耦合GA算法的煤层含气量非线性预判模型,... 为了对煤层含气量进行有效分析,以实现煤层气可靠抽采及瓦斯灾害预防,提出了遗传算法(GA)优化人工神经网络(ANNs)煤层含气量的预判方法.GA算法通过对ANNs网络的权值及阈值的寻优,构建了基于ANNs耦合GA算法的煤层含气量非线性预判模型,并结合现场实测数据进行了分析.仿真结果显示:耦合模型的预判的最大相对误差为1.47%,较之其他模型具有更高的预判精度和更好的泛化能力,能实现煤层含气量的有效预测. 展开更多
关键词 神经网络(anns) 遗传算法(GA) 耦合模型 煤层含气量
在线阅读 下载PDF
利用ANNS的空间信息处理服务智能集成算法
2
作者 赵欣 《信息技术与信息化》 2015年第9期258-259,共2页
ANNS,即人工神经网络因其自身对非线性复杂关系的逼近和基于网络神经元的信息鲁棒性与容错性近年来被广泛应用在社会生产、生活的多个领域,特别是网络信息技术领域。为了进一步提高网络数据资源的利用效率,通过对ANNS的服务语义和匹配... ANNS,即人工神经网络因其自身对非线性复杂关系的逼近和基于网络神经元的信息鲁棒性与容错性近年来被广泛应用在社会生产、生活的多个领域,特别是网络信息技术领域。为了进一步提高网络数据资源的利用效率,通过对ANNS的服务语义和匹配算法进行描述,进而对ANNS的空间信息在服务智能集成算法中的应用展开了深入研究。 展开更多
关键词 anns 空间信息 服务智能集成算法 前/后序服务
在线阅读 下载PDF
Predicting pollutant removal in constructed wetlands using artificial neural networks(ANNs)
3
作者 Christopher Kiiza Shun-qi Pan +1 位作者 Bettina Bockelmann-Evans Akintunde Babatunde 《Water Science and Engineering》 EI CAS CSCD 2020年第1期14-23,共10页
Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the e... Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced. 展开更多
关键词 CONSTRUCTED WETLANDS Urban STORMWATER POLLUTANT removal Artificial neural networks(anns) Principal component analysis(PCA)
在线阅读 下载PDF
Hydrodynamic Performance Prediction of Stepped Planing Craft Using CFD and ANNs 被引量:7
4
作者 Hamid Kazemi M.Mehdi Doustdar +2 位作者 Amin Najafi Hashem Nowruzi M.Javad Ameri 《Journal of Marine Science and Application》 CSCD 2021年第1期67-84,共18页
In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-st... In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-step hulls of Cougar planing craft are evaluated under different distances of the second step and LCG from aft,weight loadings,and Froude numbers(Fr).Our CFD results are appropriately validated against our conducted experimental test in National Iranians Marine Laboratory(NIMALA),Tehran,Iran.Then,the hydrodynamic resistance of intended planing crafts under various geometrical and physical conditions is predicted using artificial neural networks(ANNs).CFD analysis shows two different trends in the growth rate of resistance to weight ratio.So that,using steps for planing craft increases the resistance to weight ratio at lower Fr and decreases it at higher Fr.Additionally,by the increase of the distance between two steps,the resistance to weight ratio is decreased and the porpoising phenomenon is delayed.Furthermore,we obtained the maximum mean square error of ANNs output in the prediction of resistance to weight ratio equal to 0.0027.Finally,the predictive equation is suggested for the resistance to weight ratio of stepped planing craft according to weights and bias of designed ANNs. 展开更多
关键词 Stepped planing craft Hydrodynamic performance Artificial neural network(ANN) Computational fluid dynamics(CFD) RESISTANCE
在线阅读 下载PDF
Agent Modeling of User Preferences Based on Fuzzy Classified ANNs in Automated Negotiation
5
作者 顾铁军 汤兵勇 +1 位作者 马溪骏 李毅 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期45-48,共4页
In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user req... In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user requirements to implement ecommerce activities like automated transactions.The difficulty lies in the uncertainty of user preferences that include uncertain description and contents,non-linear and dynamic variability.In this paper,fuzzy language was used to describe the uncertainty and combine with multiple classified artificial neural networks(ANNs) for self-adaptive learning of user preferences.The refinement learning results of various negotiation contracts' satisfaction degrees in the extent of fuzzy classification can be achieved.Compared to unclassified computation,the experimental results illustrate that the learning ability and effectiveness of agents have been improved. 展开更多
关键词 AGENT automated negotiation user modeling artificial neural network(ANN) fuzzy classification
在线阅读 下载PDF
Application of ANNs Model with the SDSM for the Hydrological Trend Prediction in the Sub-catchment of Kurau River, Malaysia
6
作者 Zulkamain Hassan Sobri Harun Marlinda Abdul Malek 《Journal of Environmental Science and Engineering(B)》 2012年第5期577-585,共9页
The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibr... The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibrated and generated for the possible future scenarios of meteorological variables, which are temperature and rainfall by using GCMs (global climate models). The GCM used is SRES A2. The downscaled meteorological variables corresponding to SDSM were then used as input to the ANNs model calibrated with observed station data to simulate the corresponding future streamflow changes in the sub-catchment of Kurau River. This study has discovered the hydrological trend over the catchment. The projected monthly streamflow has shown a decreasing trend due to the increase in the, mean of temperature for overall months, except the month of August and November. 展开更多
关键词 SDSM ANN rainfall-streamflow climate change downscaling.
在线阅读 下载PDF
基于人工神经网络预测锂离子软包电池充放电行为研究
7
作者 刘宁 孙海波 《微纳电子技术》 2026年第1期94-103,共10页
基于人工神经网络(ANN)技术对钴酸锂/镍钴酸锂软包电池不同循环次数下的充放电曲线进行了预测,研究了隐含层数量、隐含层神经元个数、传递函数类型及优化算法对充放电曲线预测精度的调控作用。结果表明,采用单隐含层的ANN模型可实现充... 基于人工神经网络(ANN)技术对钴酸锂/镍钴酸锂软包电池不同循环次数下的充放电曲线进行了预测,研究了隐含层数量、隐含层神经元个数、传递函数类型及优化算法对充放电曲线预测精度的调控作用。结果表明,采用单隐含层的ANN模型可实现充放电曲线的高精度预测。预测充电行为时,最优的网络结构为2-47-1,隐含层和输出层传递函数分别为logsig和purelin,优化算法选用trainbr,预测值与实验值的均方误差(MSE)最低为2.43×10^(-7);预测放电行为时,最优的网络结构为2-69-1,隐含层与输出层传递函数分别为tansig和purelin,优化算法仍为trainbr,MSE最低为1.41×10^(-6)。基于电池1数据优化的模型可有效预测电池2的充放电行为,MSE稳定在10^(-5)数量级;当循环次数增至7000次时,MSE升至10^(-2)~10^(-3)数量级,这是由于模型未能充分表征电池老化过程中的电化学特征。此外,该ANN模型在训练、验证和测试数据集上的回归系数(R2)均超过0.99,展现出优异的预测精度与泛化能力。 展开更多
关键词 锂离子电池 软包电池 充放电曲线 人工神经网络(ANN) 电化学行为预测
原文传递
波、流作用下单桩局部平衡冲刷深度的神经网络预测模型
8
作者 赵辛奥 李岩 +1 位作者 董平 赵笑影 《海洋工程》 北大核心 2026年第1期94-107,共14页
桩柱是浅海和近岸工程结构的重要支撑构件。桩基周围海床在海浪或水流作用下的冲刷深度是一个重要的结构稳定设计参数,对其准确预测具有重要的工程意义和经济价值。目前,局部冲刷深度预测普遍采用经验公式、数学模型及人工智能方法。经... 桩柱是浅海和近岸工程结构的重要支撑构件。桩基周围海床在海浪或水流作用下的冲刷深度是一个重要的结构稳定设计参数,对其准确预测具有重要的工程意义和经济价值。目前,局部冲刷深度预测普遍采用经验公式、数学模型及人工智能方法。经验公式法包含的影响因素不完全,适用范围有限;而数学模型往往需要依赖确定复杂的动力地貌演变过程,计算量大,不便于工程设计使用。近年来,各种人工智能算法,特别是人工神经网络(artificial neural network,简称ANN)方法,已经被应用到桩基周围局部冲刷深度计算,显示出了优越的预测能力。应用多层感知机反向传播算法神经网络方法(MLP/BP)建立了预测波、流分别作用下桩基局部平衡冲刷深度模型。模型比较了采用有量纲和无量纲训练参数数据输入得到的预测精度,并通过系统的敏感性分析,确定了波流参数和泥沙特征对计算结果的影响程度。研究结果不仅证实了无论是对应波浪还是水流作用条件,神经网络模型均优于大多数现有工程使用的经验公式,还证实了采用有量纲参数输入训练的模型可以得到比无量纲输入模型更为准确的预测结果。 展开更多
关键词 局部冲刷 人工神经网络(ANN) MLP/BP 冲刷深度预测
在线阅读 下载PDF
ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato,garlic and cantaloupe drying under convective hot air dryer 被引量:5
9
作者 Mohammad Kaveh Vali Rasooli Sharabiani +3 位作者 Reza Amiri Chayjan Ebrahim Taghinezhad Yousef Abbaspour-Gilandeh Iman Golpour 《Information Processing in Agriculture》 EI 2018年第3期372-387,共16页
The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloup... The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method. 展开更多
关键词 Convective hot air drying Drying kinetics Effective moisture diffusivity ANFIS anns
原文传递
基于红外光谱与ANN网络的SBS改性沥青中SBS掺量快速检测方法研究
10
作者 卫昶孝 杨卓航 +4 位作者 张兵 江云关 张壮 张景辉 韩晓斌 《市政技术》 2026年第1期245-253,共9页
针对SBS改性沥青中SBS掺量检测周期长、精度偏低以及现场适用性差等问题,提出了一种基于衰减全反射傅里叶变换红外光谱(ATR-FTIR)与人工神经网络(ANN)的快速定量分析方法。以基质沥青为原材料,通过熔融涂膜法制备了SBS掺量为3.0%~5.0%... 针对SBS改性沥青中SBS掺量检测周期长、精度偏低以及现场适用性差等问题,提出了一种基于衰减全反射傅里叶变换红外光谱(ATR-FTIR)与人工神经网络(ANN)的快速定量分析方法。以基质沥青为原材料,通过熔融涂膜法制备了SBS掺量为3.0%~5.0%的改性沥青试样,利用ATR-FTIR技术采集光谱数据,并系统筛选SBS聚合物的特征红外吸收峰,同时引入Savitzky-Golay算法进行了光谱平滑预处理,有效地提高了信噪比和特征区分度。将光谱数据点划分为训练集、验证集与测试集后,通过构建FTIR-ANN耦合定量模型,实现了对改性沥青中SBS掺量的高精度快速检测。试验结果表明,该方法检测准确率的相关系数R^(2)达到0.989 97,平均预测误差低于1.5%,且线性回归模型抗干扰能力更强。该方法成功实现了SBS掺量高精度与高效检测的统一,可解决传统方法的局限性,为工程现场改性沥青质量管控提供可靠的技术手段。 展开更多
关键词 SBS改性沥青 红外光谱 ANN 快速检测
在线阅读 下载PDF
矿用带式输送机运行异常智能监测系统的研究
11
作者 石亚涵 全瑞琴 +3 位作者 赵仁震 崔文浩 何向阳 梁文博 《工业控制计算机》 2026年第1期14-16,共3页
由于输煤皮带大多距离较长,导致多种问题出现,围绕相关问题产生的原因及监测方法进行深入研究分析,提高基于视觉的监测精度。提出了一种采用YOLOv8目标检测技术实时监测,由NB-IOT无线传输的双目摄像机提供传送带图像,进行皮带跑偏、撕... 由于输煤皮带大多距离较长,导致多种问题出现,围绕相关问题产生的原因及监测方法进行深入研究分析,提高基于视觉的监测精度。提出了一种采用YOLOv8目标检测技术实时监测,由NB-IOT无线传输的双目摄像机提供传送带图像,进行皮带跑偏、撕裂、异物堆积等情况的发生概率预测,利用人工神经网络将视觉技术与物理数据相融合,实现对异常情况报警与定位。研究结果表明:提出的智能监测系统可以实时高效地监测输煤皮带常见的3种故障,以保障运输系统安全运行。 展开更多
关键词 深度学习 机器视觉 ANN 双目摄像机 NB-IOT
在线阅读 下载PDF
Visual prognosis and survival outcomes in patients with ocular adnexal diffuse large B-cell lymphoma
12
作者 Sirawit Wainipitapong Orapan Aryasit +1 位作者 Panarat Noiperm Mansing Ratanasukon 《International Journal of Ophthalmology(English edition)》 2026年第2期354-361,共8页
AIM:To investigate the clinical characteristics and treatment outcomes,including visual function and overall survival(OS)of patients with ocular adnexal diffuse large B-cell lymphoma(OA-DLBCL).METHODS:This retrospecti... AIM:To investigate the clinical characteristics and treatment outcomes,including visual function and overall survival(OS)of patients with ocular adnexal diffuse large B-cell lymphoma(OA-DLBCL).METHODS:This retrospective cohort study enrolled 29 patients diagnosed with OA-DLBCL based on histopathological biopsy between 2006 and 2023.Patients were stratified into two subgroups:primary OA-DLBCL(no prior history of lymphoma)and secondary OA-DLBCL(history of DLBCL at non-ocular adnexal sites).OS was defined as the time interval from OA-DLBCL diagnosis to death from any cause.Survival analysis was performed using the Kaplan–Meier method,and prognostic factors affecting OS were identified using multivariate Cox proportional hazards regression with a stepwise selection approach.RESULTS:The cohort included 24 patients with primary OA-DLBCL(13 males,11 females;mean age:61.36±18.29y)and 5 patients with secondary OA-DLBCL(2 males,3 females;mean age:50.94±18.17y).Among the primary OA-DLBCL subgroup,12 patients(50%)presented with advanced disease(Ann Arbor stage IIIE–IV),and 16 patients(66%)were classified as T4 disease according to the tumor-node-metastasis(TNM)staging system.The mean final visual acuity was 1.72±1.10 in the primary group and 0.90±1.18 in the secondary group.The 5-year OS rate for the entire cohort was 27.7%.Multivariate analysis identified five factors significantly associated with poor survival outcomes:epiphora[adjusted hazard ratio(aHR),36.95],atherosclerotic cardiovascular disease(aHR,10.08),human immunodeficiency virus(HIV)infection(aHR,12.47),M1 stage(aHR,6.99),and secondary OA-DLBCL(aHR,6.03;all P<0.05).The median OS was 1.68y for primary OA-DLBCL and 1.12y for secondary OA-DLBCL.CONCLUSION:A substantial proportion of patients with primary OA-DLBCL present with advanced-stage disease at diagnosis.Epiphora,atherosclerotic cardiovascular disease,HIV infection,M1 stage,and secondary OA-DLBCL are independent prognostic factors for poor survival outcomes.These findings emphasize the urgent need for optimized therapeutic strategies and early screening protocols to improve the management of OA-DLBCL,particularly in developing countries. 展开更多
关键词 ocular adnexal diffuse large B-cell lymphoma visual prognosis overall survival prognostic factors Ann Arbor staging tumor-node-metastasis staging
原文传递
基于经典机器学习模型的河流重点水质预测
13
作者 吕婷 薛琼 +1 位作者 闵兴华 金哲 《净水技术》 2026年第1期150-156,共7页
近年来,水体污染问题日益突出,给河道环境造成巨大压力,故河道水环境破坏问题亟待解决。机器学习是一种基于大量监测数据的水质预测预警方法,是河道治理的新途径。【目的】本文旨在对比不同模型对不同水质指标的预测能力。【方法】本文... 近年来,水体污染问题日益突出,给河道环境造成巨大压力,故河道水环境破坏问题亟待解决。机器学习是一种基于大量监测数据的水质预测预警方法,是河道治理的新途径。【目的】本文旨在对比不同模型对不同水质指标的预测能力。【方法】本文以长江中下游平原某河流断面为例,首先通过显著性分析和主成分分析筛选出主要水质影响因子,随后根据自动监测站点数据选用支持向量机(SVM)和长短期记忆网络(LSTM)、门控循环单元(GRU)、时间卷积网络(TCN)神经网络模型对水质水平进行模拟。【结果】氨氮和溶解氧(DO)是筛选出的主要影响因子,4种模型对氨氮模拟的准确度高于DO。【结论】GRU模型对2种指标的模拟最具优势,SVM模型对氨氮和LSTM模型对DO水质模拟具有相对优势,而TCN模型对氨氮和DO的预测能力均相对较弱。 展开更多
关键词 水质预测 影响因子识别 机器学习 支持向量机(SVM) 人工神经网络(ANN)
在线阅读 下载PDF
Artificial neural network (ANNs) and mathematical modelling of hydration of green chickpea
14
作者 Yogesh Kumar Lochan Singh +1 位作者 Vijay Singh Sharanagat Ayon Tarafdar 《Information Processing in Agriculture》 EI 2021年第1期75-86,共12页
The present study was aimed to model the hydration characteristics of green chickpea(GC)using mathematical modelling and examine predictive ability of artificial neural network(ANN)modelling.Hydration of GC was perfor... The present study was aimed to model the hydration characteristics of green chickpea(GC)using mathematical modelling and examine predictive ability of artificial neural network(ANN)modelling.Hydration of GC was performed at different temperatures 25,35,45,55 and 65℃.Different mathematical models were tested for the hydration at different temperatures.In ANN modelling,the hydration time and hydration temperature were used as input variables and moisture ratio,moisture content and hydration ratio were taken as output variables.Peleg model best described the hydration behavior at 25℃;while hydration at high-temperature was better described by Page model and Ibarz et al.model.The optimum temperature obtained for hydration was 35℃.Effective mass diffusion coefficient(D_(e))increased from 1.5510^(-11)-1.7910^(-9) m^(2)/s with the increase in the hydration temperature.The low activation energy(39.66 kJ/moL)shows the low-temperature sensitiveness of GC.Low temperature hydration(25℃)required higher time(>200 min)to achieve the equilibrium moisture content(EMC),however high temperature hydration(35–65℃)reduced the EMC time(150 min).ANN was used to predict the hydration behavior and K fold cross validation was performed to check the over fitting of ANN model.Results show that the LOGSIGMOID transfer function showed better performance when used at the hidden layer input node in conjunction to both PURELIN and TANSIGMOID.TANSIGMOID was found suitable for moisture ratio(MR)and hydration ratio(HR)prediction,as opposed to PURELIN for moisture content(MC)data.Satisfactory model prediction was obtained when the number of neurons in the hidden layer for MC,MR and HR was 12,8 and 15,respectively.Mathematical and ANN modelling results are useful to improve/predict the MC,MR and HR during hydration process of GC at different temperature and other similar process. 展开更多
关键词 Green chickpea Water absorption Hydration temperature ANN modeling
原文传递
深埋长大隧道地温预测的机器学习算法对比研究 被引量:1
15
作者 周权 罗锋 +1 位作者 柴波 周爱国 《安全与环境工程》 北大核心 2025年第1期137-147,共11页
地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机... 地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机器学习模型解译性差等问题,以A隧道为研究对象,将决策树(decision tree,DT)、支持向量机(support vector machine,SVM)、随机森林(random forest,RF)进行耦合,提出了基于DT-SVM-RF模型的深埋长大隧道地温预测方法。在分析隧道综合测井、地应力及岩石热物理试验、航空物探数据后,选取深度、声波波速等10个影响因子作为模型的输入,采用随机交叉验证和空间交叉验证对模型的鲁棒性、泛化能力进行检验,构建LASSO回归、随机森林、互信息3种回归模型,分析10个影响因子的特征重要性排序。结果表明:在测试集上多元线性回归、支持向量机、人工神经网络和决策树-支持向量机-随机森林(decision tree-support vector machinerandom forest,DT-SVM-RF)模型决定系数(R^(2))分别为0.76、0.91、0.88、0.93,均方误差MSE分别为17.64、6.25、8.46、5.20,DT-SVM-RF模型具有相对更优的预测性能,深度、岩石导温系数、岩石导热系数、最大水平主应力特征较为重要,说明DT-SVM-RF模型能有效地提高地温预测的准确率。研究结果可为类似隧道地温预测提供一种精度更高的可行新思路。 展开更多
关键词 隧道热害 隧道安全 多元线性回归 支持向量机(SVM) 随机森林(RF) 人工神经网络(ANN) 特征选择
在线阅读 下载PDF
人工神经网络算法下的产品造型意象预测模型 被引量:1
16
作者 陈国强 支梦帆 +1 位作者 申正义 顾紫轩 《机械设计与制造》 北大核心 2025年第7期278-284,289,共8页
从用户情感出发,对产品造型特征与目标用户情感意象的匹配关系进行研究。以救援挖掘机为设计对象,运用问卷调研法、语义差异法、聚类分析等方法获取用户评价指标与优势样本。通过决策树方法推理得到产品造型特征要素,针对样本进行造型... 从用户情感出发,对产品造型特征与目标用户情感意象的匹配关系进行研究。以救援挖掘机为设计对象,运用问卷调研法、语义差异法、聚类分析等方法获取用户评价指标与优势样本。通过决策树方法推理得到产品造型特征要素,针对样本进行造型因子的解构与提取。构建产品造型因子编码矩阵与用户情感意象评价矩阵,搭建产品造型意象人工神经网络(ANN)预测模型,实现产品造型特征与用户情感意象之间的非线性映射关系,通过对比多元线性回归预测模型验证其优势性。根据产品造型意象人工神经网络预测模型推荐造型因子进行设计实践,验证方法的可行性,为特种车辆类产品造型的优化设计提供参考。 展开更多
关键词 人工神经网络(ANN) 造型优化设计 产品意象预测
在线阅读 下载PDF
外周血miR-141、miR-451a与弥漫大B细胞淋巴瘤患者化疗应答的预测价值
17
作者 赵瑾 关涛 +2 位作者 马莉 郑美婧 苏丽萍 《中国卫生统计》 北大核心 2025年第6期900-903,910,共5页
目的探讨外周血miR-141、miR-451a与弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者化疗应答的预测价值。方法选取2021年6月至2023年4月我院92例DLBCL患者作为DLBCL组,根据化疗效果分为化疗无效亚组(n=29)与化疗有效亚组(... 目的探讨外周血miR-141、miR-451a与弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者化疗应答的预测价值。方法选取2021年6月至2023年4月我院92例DLBCL患者作为DLBCL组,根据化疗效果分为化疗无效亚组(n=29)与化疗有效亚组(n=63)。随机选取同期92例入院体检健康者为对照组,采用实时荧光定量聚合酶链反应测定miR-141、miR-451a相对表达量。比较DLBCL组与健康对照组外周血miR-141、miR-451a表达,以logistic回归模型分析筛选DLBCL患者化疗应答影响因素,相关性分析DLBCL患者外周血miR-141、miR-451a与国际预后指数(international prognositic index,IPI)评分、Ann Arbor分期间相关性,受试者工作特征(receiver operating characteristic,ROC)曲线评价DLBCL患者miR-141、miR-451a单项检测及联合检测预测化疗应答的价值。结果DLBCL患者外周血miR-141、miR-451a表达均低于健康对照组(P<0.05);logistic回归分析结果显示Ann Arbor分期、IPI评分均为DLBCL患者化疗应答独立危险因素,外周血miR-141、miR-451a均为DLBCL患者化疗应答性独立保护因素(P<0.05);DLBCL患者外周血miR-141、miR-451a与IPI评分、Ann Arbor分期均具有显著负相关关系(P<0.05);外周血miR-141、miR-451a单独预测DLBCL患者化疗应答的曲线下面积(area under the curve,AUC)值分别为0.770、0.794,二者联合预测AUC值高达0.929,明显高于miR-141、miR-451a单独预测,此时灵敏度、特异度分别为86.21%、85.71%。结论DCBCL患者血清miR-141、miR-451a表达下调,且与应答有关,检测二者水平,可预测DCBCL患者化疗应答,为临床工作提供参考。 展开更多
关键词 弥漫大B细胞淋巴瘤 miR-141 miR-451a 化疗应答 Ann Arbor分期 IPI评分
暂未订购
A Hybrid Framework Integrating Deterministic Clustering,Neural Networks,and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network
18
作者 Muhammad Salman Qamar Muhammad Fahad Munir 《Computers, Materials & Continua》 2025年第9期5463-5485,共23页
Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the lim... Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs.Current energy efficiency strategies,such as clustering,multi-hop routing,and data aggregation,face challenges,including uneven energy depletion,high computational demands,and suboptimal cluster head(CH)selection.To address these limitations,this paper proposes a hybrid methodology that optimizes energy consumption(EC)while maintaining network performance.The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic(LEACH-D)protocol using an Artificial Neural Network(ANN)and Bayesian Regularization Algorithm(BRA).LEACH-D improves upon conventional LEACH by ensuring more uniform energy usage across SNs,mitigating inefficiencies from random CH selection.The ANN further enhances CH selection and routing processes,effectively reducing data transmission overhead and idle listening.Simulation results reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing protocols.This framework offers a promising solution to the energy efficiency challenges in WSNs,paving the way for more sustainable and reliable network deployments. 展开更多
关键词 Wireless sensor networks(WSNs) machine learning based artificial neural networks(anns) energy consumption(EC) LEACH-D sensor nodes(SNs) Bayesian Regularization Algorithm(BRA)
在线阅读 下载PDF
基于CO浓度分布的桥梁电缆通道着火点位置辨识 被引量:1
19
作者 董林杰 张任飞 +2 位作者 王军飛 王兴松 田梦倩 《防灾减灾工程学报》 北大核心 2025年第1期119-127,共9页
桥梁高压电缆通道火灾具有蔓延迅速且扑灭困难的特点,极易造成巨大的经济损失并对巡检人员的安全造成威胁,早期发现火灾位置对救援工作至关重要,因此研究桥梁箱梁高压电缆通道火灾初期的着火点位置智能辨识和预测问题具有重要意义。通过... 桥梁高压电缆通道火灾具有蔓延迅速且扑灭困难的特点,极易造成巨大的经济损失并对巡检人员的安全造成威胁,早期发现火灾位置对救援工作至关重要,因此研究桥梁箱梁高压电缆通道火灾初期的着火点位置智能辨识和预测问题具有重要意义。通过PyroSim分析软件建立了桥梁箱梁电缆通道火灾初期烟气蔓延的仿真模型,得到了CO气体扩散规律;设计并训练了用于数据分层和各层着火点位置辨识的人工神经网络(ANN)模型,基于仿真数据进行了着火点位置辨识实验;设计了着火点辨识系统并在模拟电缆通道中进行了现场测试。研究结果表明:(1)在基于仿真数据的着火点位置辨识实验中,本研究建立的着火点位置辨识ANN模型,在50 m电缆通道中针对单层电缆阴燃位置辨识的最大误差为0.98 m,最小误差为-0.32 m;针对三层电缆阴燃位置辨识的最大误差为1.53 m,最小误差为-1.26 m。(2)在着火点辨识系统现场测试实验中,着火点辨识的最大误差为0.68 m,最小误差为-0.27 m,该精度能够满足桥梁箱梁高压电缆通道火灾初期的着火点位置智能辨识和预测的需求。研究结果有望在实际应用中提高桥梁箱梁电缆通道火灾预警的准确性和及时性。 展开更多
关键词 高压电缆通道 CO浓度分布 人工神经网络(ANN) 着火点辨识 PyroSim仿真 火灾预防
原文传递
基于WOA-IC优化神经网络的隧道爆破振动预测研究 被引量:2
20
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(WOA) 人工神经网络(ANN)
在线阅读 下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部