期刊文献+
共找到509篇文章
< 1 2 26 >
每页显示 20 50 100
The nexus between the volatility of Bitcoin,gold,and American stock markets during the COVID-19 pandemic:evidence from VAR-DCC-EGARCH and ANN models
1
作者 Virginie Terraza Asli Boru Ipek Mohammad Mahdi Rounaghi 《Financial Innovation》 2024年第1期3558-3591,共34页
The spread of the coronavirus has reduced the value of stock indexes,depressed energy and metals commodities prices including oil,and caused instability in financial markets around the world.Due to this situation,inve... The spread of the coronavirus has reduced the value of stock indexes,depressed energy and metals commodities prices including oil,and caused instability in financial markets around the world.Due to this situation,investors should consider investing in more secure assets,such as real estate property,cash,gold,and crypto assets.In recent years,among secure assets,cryptoassets are gaining more attention than traditional investments.This study compares the Bitcoin market,the gold market,and American stock indexes(S&P500,Nasdaq,and Dow Jones)before and during the COVID-19 pandemic.For this purpose,the dynamic conditional correlation exponential generalized autoregressive conditional heteroskedasticity model was used to estimate the DCC coefficient and compare this model with the artificial neural network approach to predict volatility of these markets.Our empirical findings showed a substantial dynamic conditional correlation between Bitcoin,gold,and stock markets.In particular,we observed that Bitcoin offered better diversification opportunities to reduce risks in key stock markets during the COVID-19 period.This paper provides practical impacts on risk management and portfolio diversification. 展开更多
关键词 Bitcoin market Gold market American stock markets COVID-19 pandemic VAR-DCC-EGARCH model ann model
在线阅读 下载PDF
Development of processing map for InX-750 superalloy using hyperbolic sinus equation and ANN model 被引量:1
2
作者 Saeed Aliakbari Sani Ali Khorram +1 位作者 Abed Jaffari Golamreza Ebrahimi 《Rare Metals》 SCIE EI CAS CSCD 2021年第12期3598-3607,共10页
The aim of this study is to develop processing maps based on two models and compare them with conventional processing maps.The hyperbolic sinus constitutive equation and artificial neural network(ANN)approaches were u... The aim of this study is to develop processing maps based on two models and compare them with conventional processing maps.The hyperbolic sinus constitutive equation and artificial neural network(ANN)approaches were used in this investigation to predict flow stress and to develop processing maps in various conditions.The hot compression tests of InX-750 superalloy were carried out above the gamma prime phase temperature and within the temperature range of 1000-1150℃and strain rate of 0.001-1.000 s^(-1).The processing maps were conducted based upon dynamic material model(DMM)for data by experimental,constitutive equation and ANN approaches.The processing maps drawn by either of the prediction methods show that the method developed by ANN data does not significantly differ from the experimental processing map.The ANN approach is thus a suitable way to predict the flow stress as well as hot working processing map of engineering metals and materials. 展开更多
关键词 Hot deformation Hyperbolic sine equation ann model Prediction Processing map
原文传递
Performance Evaluation of Small-channel Pulsating Heat Pipe Based on Dimensional Analysis and ANN Model 被引量:1
3
作者 Xuehui Wang Edward Wright +2 位作者 Zeyu Liu Neng Gao Ying Li 《Energy Engineering》 EI 2022年第2期801-814,共14页
The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturi... The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturisation.To boost the application of PHP,reliable heat transfer performance evaluationmodels are especially important.In this paper,a heat transfer correlation was firstly proposed for closed PHP with various working fluids(water,ethanol,methanol,R123,acetone)based on collected experimental data.Dimensional analysis was used to group the parameters.It was shown that the average absolute deviation(AAD)and correlation coefficient(r)of the correlation were 40.67%and 0.7556,respectively.For 95%of the data,the prediction of thermal resistance and the temperature difference between evaporation and condensation section fell within 1.13K/Wand 40.76K,respectively.Meanwhile,an artificial neural networkmodelwas also proposed.The ANN model showed a better prediction accuracy with a mean square error(MSE)and correlation coefficient(r)of 7.88e-7 and 0.9821,respectively. 展开更多
关键词 Pulsating heat pipe OSCILLATION heat transfer correlation ann model
在线阅读 下载PDF
Study on Residual Oil HDS Process with Mechanism Model and ANN Model
4
作者 Ma Chengguo Weng Huixin (Research Center of Petroleum Processing, ECUST, Shanghai 200237) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第1期39-43,共5页
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur... Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process. 展开更多
关键词 residual oil hydrodesulfurization (HDS) mechanism model artificial neural network ann model
在线阅读 下载PDF
Comparison of ARIMA and ANN Models Used in Electricity Price Forecasting for Power Market
5
作者 Gao Gao Kwoklun Lo Fulin Fan 《Energy and Power Engineering》 2017年第4期120-126,共7页
In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper intr... In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model. 展开更多
关键词 ELECTRICITY MARKETS ELECTRICITY PRICES ARIMA modelS ann modelS Short-Term Forecasting
暂未订购
ANN model of subdivision error based on genetic algorithm
6
作者 齐明 邹继斌 尚静 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期131-136,共6页
According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision er... According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision. 展开更多
关键词 genetic algorithm artificial neural network ann subdivision error angular measuring system error model
在线阅读 下载PDF
Artificial Intelligence-Driven FVM-ANNModel for Entropy Analysis ofMHD Natural Bioconvection in Nanofluid-Filled Porous Cavities
7
作者 Noura Alsedais Mohamed Ahmed Mansour +1 位作者 Abdelraheem M.Aly Sara I.Abdelsalam 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1277-1307,共31页
The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological... The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering. 展开更多
关键词 ann model finite volume method natural bioconvection flow magnetohydrodynamics(MHD) porous media
在线阅读 下载PDF
基于ANN的上海土体HSS模型模量参数研究
8
作者 刘航宇 顾晓强 胡靖 《地下空间与工程学报》 北大核心 2025年第3期800-804,共5页
小应变硬化(HSS)模型能够反映土体在小应变范围内模量的高度非线性,已被广泛应用于复杂地质条件下的基坑变形计算。模型参数的合理取值对于计算结果有着重要影响,但目前规范参数推荐值范围较大,给工程应用带来了不便,因此亟需解决模型... 小应变硬化(HSS)模型能够反映土体在小应变范围内模量的高度非线性,已被广泛应用于复杂地质条件下的基坑变形计算。模型参数的合理取值对于计算结果有着重要影响,但目前规范参数推荐值范围较大,给工程应用带来了不便,因此亟需解决模型参数精确取值问题。分析了已有HSS模型参数的数据特征,引入人工神经网络方法(ANN),得到了上海土体HSS模型模量参数与土体初始孔隙比e、压缩模量E_(s1-2)等的经验关系。实现了通过常规工程勘察报告快速准确确定HSS模型模量参数,确定的参数值较推荐取值更接近实测值。研究成果可以为上海地区地下工程提供参考。 展开更多
关键词 小应变刚度 HSS模型 ann模型 参数取值
原文传递
基于ANN-KF-BiLSTM的桥梁温度多步预测
9
作者 闫文佳 江鸥 +1 位作者 李鸿先 徐嘉璐 《重庆交通大学学报(自然科学版)》 北大核心 2025年第6期131-138,共8页
利用深度学习中学习特征能力较强的人工神经网络(ANN)模型和学习时间序列能力较强的双向长短期记忆网络(BiLSTM)模型,辅以卡尔曼滤波(KF)对人工神经网络模型的结果进行动态调整,基于stacking集成策略融合ANN和BiLSTM模型,构建了一个既... 利用深度学习中学习特征能力较强的人工神经网络(ANN)模型和学习时间序列能力较强的双向长短期记忆网络(BiLSTM)模型,辅以卡尔曼滤波(KF)对人工神经网络模型的结果进行动态调整,基于stacking集成策略融合ANN和BiLSTM模型,构建了一个既能利用气象温度又能记忆桥梁自身温度时间序列的ANN-KF-BiLSTM模型。以云南省某连续刚构桥的温度预测为例,验证了该模型的有效性。研究结果表明:ANN-KF-BiLSTM模型在桥梁温度多步预测中表现出明显优势,在预测时间步数小于96时,拟合程度超过0.89,在预测步数达到168时,平均拟合程度仍可达到约0.76;相较于基准模型,ANN-KF-BiLSTM模型拟合程度更高,预测稳定性更好。研究结果改善了当前利用深度学习模型预测桥梁温度集中于单步预测的状况,为桥梁温度的多步预测提供了一种有效的方法。 展开更多
关键词 桥梁工程 桥梁温度 双向长短期记忆网络 卡尔曼滤波 ann-KF-BiLSTM模型
在线阅读 下载PDF
Modeling of hot deformation behavior and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network(ANN)model 被引量:21
10
作者 S.Aliakbari Sani G.R.Ebrahimi +1 位作者 H.Vafaeenezhad A.R.Kiani-Rashid 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第2期134-144,共11页
The aim of the present study was to investigate the modeling and prediction of the high temperature flow characteristics of a cast magnesium(Mg-Al-Ca)alloy by both constitutive equation and ANN model.Toward this end,h... The aim of the present study was to investigate the modeling and prediction of the high temperature flow characteristics of a cast magnesium(Mg-Al-Ca)alloy by both constitutive equation and ANN model.Toward this end,hot compression experiments were performed in 250-450℃and in strain rates of 0.001-1 s^(−1).The true stress of alloy was first and foremost described by the hyperbolic sine function in an Arrhenius-type of constitutive equation taking the effects of strain,strain rate and temperature into account.Predictions indicated that unlike low strain rates and high temperature with dominant DRX activation,in relatively high strain rate and low temperature values,the precision of the models become decreased due to activation of twinning phenomenon.At that moment and for a better evaluation of twinning effect during deformation,a feed-forward back propagation ANN was developed to study the flow behavior of the investigated alloy.Then,the performance of the two suggested models has been assessed using a statistical criterion.The comparative assessment of the gained results specifies that the well-trained ANN is much more precise and accurate than the constitutive equations in predicting the hot flow behavior. 展开更多
关键词 Hot deformation Magnesium alloy modeling TWINNING Hyperbolic sine equation ann model
在线阅读 下载PDF
Predicting the capacity of perfobond rib shear connector using an ANN model and GSA method 被引量:2
11
作者 Guorui SUN Jun SHI Yuang DENG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第10期1233-1248,共16页
Due to recent advances in the field of artificial neural networks(ANN)and the global sensitivity analysis(GSA)method,the application of these techniques in structural analysis has become feasible.A connector is an imp... Due to recent advances in the field of artificial neural networks(ANN)and the global sensitivity analysis(GSA)method,the application of these techniques in structural analysis has become feasible.A connector is an important part of a composite beam,and its shear strength can have a significant impact on structural design.In this paper,the shear performance of perfobond rib shear connectors(PRSCs)is predicted based on the back propagation(BP)ANN model,the Genetic Algorithm(GA)method and GSA method.A database was created using push-out test test and related references,where the input variables were based on different empirical formulas and the output variables were the corresponding shear strengths.The results predicted by the ANN models and empirical equations were compared,and the factors affecting shear strength were examined by the GSA method.The results show that the use of ANN model optimization by GA method has fewer errors compared to the empirical equations.Furthermore,penetrating reinforcement has the greatest sensitivity to shear performance,while the bonding force between steel plate and concrete has the least sensitivity to shear strength. 展开更多
关键词 perfobond rib shear connector shear strength ann model global sensitivity analysis
原文传递
ANN模型与分段线性插值及回归模型的比较及应用 被引量:1
12
作者 赵伟 毛继新 +1 位作者 关见朝 吴兴华 《泥沙研究》 CAS CSCD 北大核心 2024年第4期74-80,共7页
对ANN模型、分段线性插值模型和非线性回归模型从原理上进行了比较,ANN模型易于构建各影响因素与因变量间复杂关系,非线性回归模型和分段线性插值模型可以将自变量与因变量间的关系通过表达式直观表达。以荆江三口分流量与枝城流量的关... 对ANN模型、分段线性插值模型和非线性回归模型从原理上进行了比较,ANN模型易于构建各影响因素与因变量间复杂关系,非线性回归模型和分段线性插值模型可以将自变量与因变量间的关系通过表达式直观表达。以荆江三口分流量与枝城流量的关系为应用算例,采用相关系数、纳什效率系数、均方根误差和平均绝对误差等4个评价指标对3个模型的拟合精度和误差大小进行了比较。结果表明:3个模型均可应用于模拟枝城流量与荆江三口分流量的关系,但3个模型的计算值与实际值间的误差大小存在差异,从4个评价指标综合来看,ANN模型计算值与实测值的误差最小,分段线性插值模型次之,回归模型计算精度相对较低。 展开更多
关键词 ann模型 非线性回归模型 分段线性插值模型 荆江河段 三口分流
原文传递
Research on Optimizing the Hidden Layer Structure of ANN-Based Model and Its Application in Predicting End-Quench Curves of Steels 被引量:1
13
作者 Liang Wu, Weisheng Gu School of Mechanical Engineering. Dong Hua University, Shanghai 200050, China 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期342-346,共5页
In this paper, a method of optimizing the number of hidden layer neurons has been put forward. This optimizing method is suitable for three layers B-p network. The purpose of this optimizing method is to reduce the pr... In this paper, a method of optimizing the number of hidden layer neurons has been put forward. This optimizing method is suitable for three layers B-p network. The purpose of this optimizing method is to reduce the predicting errors when the model is used as predicting model. As an example of application, a predicting model of steel end-quench curves has been designed by using this optimizing method. The result shows that the optimization of ANN hidden layer architecture has an effect on reducing predicting errors. 展开更多
关键词 Optimization ann Prediction End-Quench CURVES model
在线阅读 下载PDF
A Comparison of ANN and HSPF Models for Runoff Simulation in Balkhichai River Watershed, Iran 被引量:3
14
作者 Farzbod Amirhossien Faridhossieni Alireza +1 位作者 Javan Kazem Sharifi Mohammadbagher 《American Journal of Climate Change》 2015年第3期203-216,共14页
In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The c... In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF. 展开更多
关键词 HSPF model Artificial Neural Network (ann) RUNOFF Simulation Balkhichai River WATERSHED
暂未订购
Optimization of the Conceptual Model of Green-Ampt Using Artificial Neural Network Model (ANN) and WMS to Estimate Infiltration Rate of Soil (Case Study: Kakasharaf Watershed, Khorram Abad, Iran)
15
作者 Ali Haghizadeh Leila Soleimani Hossein Zeinivand 《Journal of Water Resource and Protection》 2014年第5期473-480,共8页
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ... Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024). 展开更多
关键词 INFILTRATION Green-Ampt Empirical model WMS model Artificial Neural Network model (ann)
暂未订购
基于ANN-CA模型的F县季节性闲置耕地模拟及预测
16
作者 王静祎 王加胜 《安徽农学通报》 2024年第10期133-138,共6页
为保护耕地和提高耕地利用率,促进农业可持续发展,本研究利用ANN-CA模型对F县的季节性闲置耕地情况进行模拟预测。模拟结果表明,在α=2,T=0.8的参数组合下,各类用地变化的模拟精度较高,模拟出的用地变化情况与2020年的实际用地情况较为... 为保护耕地和提高耕地利用率,促进农业可持续发展,本研究利用ANN-CA模型对F县的季节性闲置耕地情况进行模拟预测。模拟结果表明,在α=2,T=0.8的参数组合下,各类用地变化的模拟精度较高,模拟出的用地变化情况与2020年的实际用地情况较为贴近;根据季节性闲置耕地识别规则模拟出F县未来耕地季节性闲置现象呈现明显好转趋势,预测2025年F县季节性闲置耕地主要集中在东北部和南部,面积为25.8318km^(2)。生产中,注意对耕地进行科学合理的养护和利用,以保障农作物的产量和质量,确保农业可持续发展。 展开更多
关键词 季节性闲置耕地 ann-CA模型 模拟预测 耕地利用率 土地养护
在线阅读 下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:4
17
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 BP-ann RBF-ann
在线阅读 下载PDF
一种基于预测波动率的期权定价系统
18
作者 董纪阳 何万里 《运筹与管理》 北大核心 2025年第3期170-175,I0092-I0094,共6页
要进行期权定价就要准确描述资产价格的波动率。大量的研究表明,市场上资产价格波动率为常数的传统假设已渐渐不适用于现代金融市场计量的发展,而随机模型在实际应用中尚存一些难以克服的困难问题。本文设计的期权定价系统在常数波动率... 要进行期权定价就要准确描述资产价格的波动率。大量的研究表明,市场上资产价格波动率为常数的传统假设已渐渐不适用于现代金融市场计量的发展,而随机模型在实际应用中尚存一些难以克服的困难问题。本文设计的期权定价系统在常数波动率和随机模型之间寻求一种折衷建模方式,模型只对波动率做可预测的假设。首先基于深层玻耳兹曼机提取波动率的影响因子建立波动率DBM-ANN模型,基此利用随机微分和鞅方法在风险中性条件下得到期权定价公式。该系统无需假定波动率的分布形式,通过资产价格确定模型参数,一定程度上克服了传统人工设计波动率模型形式,参数只能使用期权市场价格进行估计的不足。计算实验中,数值结果表明系统对波动率运动规律的刻画精度比较理想,并通过对比发现B-S公式对50ETF股票期权的定价往往低于本文期权定价,其程度会随着距离到期日剩余的时间的增加而增加,随着S/K→1时而增加。 展开更多
关键词 期权定价系统 波动率 DBM-ann模型 风险中性定价
在线阅读 下载PDF
基于AI技术提升非接触式测温精度研究
19
作者 邵弈策 冯创新 +4 位作者 王宏 朱恂 陈蓉 丁玉栋 廖强 《工程热物理学报》 北大核心 2025年第5期1646-1651,共6页
体温检测是疫情防治的重要环节,接触式测温受到新冠病毒高传染性的限制难以适用,而非接触式测温容易受到外界因素干扰导致测量精度不足。本文综合考虑了多种因素对非接触式测温的影响,建立了基于支持向量机算法(SVM)和神经网络算法(ANN... 体温检测是疫情防治的重要环节,接触式测温受到新冠病毒高传染性的限制难以适用,而非接触式测温容易受到外界因素干扰导致测量精度不足。本文综合考虑了多种因素对非接触式测温的影响,建立了基于支持向量机算法(SVM)和神经网络算法(ANN)的两种补偿修正模型。通过模拟人体体温采集过程获得了大量测温数据,然后用得到的数据训练模型,最后对两种模型的修正结果进行对比评估。结果表明,SVM模型和ANN模型的修正运算用时很短且两种模型均能有效提升非接触式测温的测量精度,SVM模型的精度和稳定性相对更好,但随着样本容量的增加ANN模型表现出了进一步提升修正精度的潜力。 展开更多
关键词 新冠疫情 非接触式测温精度 SVM模型 ann模型
原文传递
基于BP-ANN模型的香附效应成分筛选 被引量:9
20
作者 胡律江 郭慧玲 +3 位作者 曾辉 金鑫 赵晓娟 闫柏屹 《中国实验方剂学杂志》 CAS 北大核心 2013年第22期27-30,共4页
目的:分析香附不同炮制品的HPLC指纹图谱与药理效应数据,应用偏最小二乘法(PLS)和BP神经网络模型(BP-ANN)对香附不同炮制品中HPLC指纹图谱共有峰的峰面积与调经止痛药理效应进行关联,筛选香附主要效应成分。方法:采用PLS进行数据处理,通... 目的:分析香附不同炮制品的HPLC指纹图谱与药理效应数据,应用偏最小二乘法(PLS)和BP神经网络模型(BP-ANN)对香附不同炮制品中HPLC指纹图谱共有峰的峰面积与调经止痛药理效应进行关联,筛选香附主要效应成分。方法:采用PLS进行数据处理,通过MATLAB中的神经网络工具箱,建立BP-ANN模型,计算出各个因素的平均影响值(MIV),根据MIV大小列出各因素对应变量(药理效应)影响的相对重要性顺位,筛选香附治疗痛经的有效成分。结果:11组香附样品中存在16个共有峰,假设各峰的成分分别为X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16。香附对缩宫素所致小鼠痛经模型的扭体反应抑制率影响的主要效应成分排序为X13>X15>X7>X16;对缩宫素诱导小鼠离体子宫痉挛性收缩模型的肌张力抑制率影响的主要效应成分排序为X15>X13>X5>X16。结论:通过应用PLS和BP-ANN模型进行HPLC指纹图谱共有峰与药理效应关联性分析,可进行香附主要效应成分的筛选。 展开更多
关键词 香附 平均影响值 BP-ann模型 效应成分 人工神经网络
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部