The Sandaowanzi gold deposit is an extremely Au-rich deposit in the Northern Great Hinggan Range in recent years.Zircon U-Pb geochronology,Hf isotope analysis,and the geochemistry of andesites of the Longjiang Formati...The Sandaowanzi gold deposit is an extremely Au-rich deposit in the Northern Great Hinggan Range in recent years.Zircon U-Pb geochronology,Hf isotope analysis,and the geochemistry of andesites of the Longjiang Formation from the Sandaowanzi gold deposit were used to investigate the origin,magmatic evolution as well as mineralization and tectonic setting of the Early Cretaceous epithermal gold deposits in the northern Great Hinggan Range area.Zircon U-Pb dating reveals an emplacement age of 123.4±0.3 Ma,indicating that the andesites of the Sandaowanzi gold deposit was formed during the Early Cretaceous.The andesites are enriched in light rare earth elements relative to heavy rare earth elements and have weak negative Eu anomalies(δEu=0.76-0.90).The rocks are also enriched in large-ion lithophile elements,such as Rb,Ba,Th,U,and K,and depleted in the high-field-strength elements,such as Nb,Ta,and P.These characteristics are typical of volcanic rocks related to subduction.Igneous zircons from the andesite samples have relatively homogeneous Hf isotope ratios,176Hf/177Hf values of 0.282343-0.282502,εHf(t)values of-12.58 to-6.95,and two-stage model ages(TDM2)of 1743-1431 Ma.The characteristics of the andesites of the Longjiang Formation are consistent with derivation from partial melting of enriched mantle wedge metasomatized by subducted-slab-derived fluids.These rocks formed in an extensional environment associated with the closure of the Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Plate.Mineralization occurred towards the end of volcanism,and the magmatic activity and mineralization are products of the same geodynamic setting.展开更多
Continental crust in average exhibits a similar composition in both major and trace elements to andesites along active continental margins.For this reason,andesitic magmatism above oceanic subduction zones is consider...Continental crust in average exhibits a similar composition in both major and trace elements to andesites along active continental margins.For this reason,andesitic magmatism above oceanic subduction zones is considered to have played a key role in the generation of continental crust along convergent plate boundaries.With respect to the origin of andesites themselves,however,there is still a hot debate on how they have acquired their geochemcial compositions.The debate is mainly centralized on the relative contributions of crustal contamination,magma differentiation and source mixing,which reaches an impasse in the past decades.The essential reason for this kind of debates is that these three mechanisms only can account for some of the geochemical observations for andesites,leading to insufficient discrimination among them.Nevertheless,the geochemical features of andesites are primarily controled from early to late by the composition of their source rocks in addition to partial melting and magma differentiation processes.If source mixing and partial melting processes in the early stage of andesite magmatism can account for the first-order geochemical features of andesites,there is no need to invoke the late processes of magma differentiation and crustal contamination for andesite petrogenesis.This is illustrated by quantitative forward modeling of the geochemical data for Quaternary andesites from the Andean arc in South America based on an integrated interpretation of these data.The modeling has run with four steps from early to late:(1)dehydration of the subducting oceanic crust at forearc depths;(2)partial melting of the subducting terrigenous sediment and altered oceanic basalt at subarc depths to produce hydrous felsic melts;(3)the generation of basaltic metasomatites(e.g.,Si-excess pyroxenite)in the mantle wedge through reaction of the mantle wedge peridotite with large amounts of the hydrous felsic melts;(4)the production of andesitic melts by partial melting of the basaltic metasomatites.The results not only testify the hypothesis that the trace element and radiogenic isotope compositions of andesites can be directly produced by the source mixing and mantle melting but also demonstrate that partial melting of the basaltic metasomatites can reproduce the lithochemical composition of andesites.The compositional variations of Andean andesites within a single volcanic zone and among different volcanic zones can be explained by incorporating different amounts of heterogeneous hydrous felsic melts into their mantle sources,followed by different degree of partial melting under different pressures and temperatures.Therefore,the source mixing and partial melting processes at subarc depths can account for the first-order geochemical features of Andean andesites.In this regard,it may be not necessary for andesite petrogenesis to invoke the significant contributions from the processes of magma differentiation and crustal contamination.展开更多
Since the Paleozoic,the tectonic evolution of northeastern Eurasia has been primarily influenced by the Paleo-Asian Ocean and the Paleo-Pacific tectonic domains.However,the spatial and temporal frameworks,as well as t...Since the Paleozoic,the tectonic evolution of northeastern Eurasia has been primarily influenced by the Paleo-Asian Ocean and the Paleo-Pacific tectonic domains.However,the spatial and temporal frameworks,as well as the timing of the tectonic transition between these two oceanic domains,remain unclear.For addressing these issues,we present petrological,geochronological,and geochemical data for andesite and sandstone samples from the Seluohe Group along the Jilin-Yanji Suture between the Jiamusi-Khanka Block and the North China Craton.The geochemical results indicate that the andesite sample is high-Mg andesite.Its magma source was generated by the metasomatized mantle wedge influenced by fluids derived from the subducted slab in a continental island arc setting.The high-Mg andesite gives the crystallization ages of Early Triassic(249±3 Ma).The sandstone is immature greywacke with a maximum depositional age of Early Triassic(247±1 Ma),and its sediments primarily originate from concurrent magmatic rocks within a juvenile continental arc.Based on our new findings,we propose that the Seluohe Group represents an Early Triassic volcanic-sedimentary association with continental island arc characteristics associated with the southwestward subduction of the Heilongjiang Ocean.We identified a sedimentary basin intimately associated with one or more continental arcs along the northeastern edge of the North China Craton.We suggest that the southwestward subduction of the Jilin-Heilongjiang Ocean in the Early Mesozoic accounts for this continental arc setting.There is a distinct temporal gap between the closure of the Paleo-Asian Ocean(ca.260 Ma)and the onset of Paleo-Pacific plate subduction(234–220 Ma),which is essentially coeval with the southwestward subduction of the Jilin-Heilongjiang Ocean between 255 Ma and 239 Ma.展开更多
85 volcanic rocks of the Yixian Formation from the Sihetun type section werecollected and analyzed for geochemical and isotopic compositions. Major element compositionsindicate that the Sihetun volcanic rocks are high...85 volcanic rocks of the Yixian Formation from the Sihetun type section werecollected and analyzed for geochemical and isotopic compositions. Major element compositionsindicate that the Sihetun volcanic rocks are high magnesium andesites with some basalts occurring atthe bottom of section. The Sihetun high magnesium andesites (SiO_2 = 52.82-59.31 wt%, Al_2O_3=14.15-16.35wt%) show many characteristics of adakites such as depletion in heavy rare-earth elements(HREE; Yb = 1.03-1.88 μg/g) and Y(12-20 μg/g) and high Sr (620-1323 μg/g) and Sr/Y(32-88), withhigh La_N/Yb_N ratio (10-25). They share similar major and trace element characteristics to volcanicrocks from the Xinglonggou Formation except their lower Nd isotope ratios (^(143)Nd/^(144)Nd(130Ma) = 0.5118-0.5119, ε_(Nd) (130Ma) = -11.6-13.8, ^(87)Sr/^(86)Sr (130 Ma) = 0.7058-0.7064.They were interpreted in a way that eclogite that formed at the base of thickened Archean lowercrust of the North China craton foundered into the convecting mantle and subsequently melted andinteracted with peridotite. However, compared to the Xinglonggou volcanic rocks, the source of theSihetun magma contained more ancient continental crustal material in order to explain its evolved Ndisotopes. The age of the Sihetun Formation was 120 to 130 Ma, and this indicates that delaminationlasted to the early Cretaceous period. The Sr contents and Sr/Y ratios of the Sihetun high-Mgandesites show significant negative correlations with SiO_2 for samples with SiO_2 】 56%. Thesesuggest that the Sr and Sr/Y values were reduced due to fractional crystallization of plagioclase.Accordingly, the effect of crystallization on volcanic Sr and Sr/Y ratio has to be taken intoaccount.展开更多
High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA'...High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA's genesis inferred from petrolog- ical and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250-1400℃ and high-pressure of 2.0-5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth's mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important pro- cess to generate the HMAs within crations.展开更多
The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these ro...The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these rocks and they also show porphyritic,vitrophyric,and vitroglomeroporphyric textures.Plagioclase,clinopyroxene,±orthopyroxene are the major mineral phases.The SHRIMP U-Pb zircon dating yielded an age of 41.00±0.69 Ma for the rocks(Middle Eocene,Bartonian).Geochemically,they are of medium-to high-K calc-alkaline affinity.Primitive mantle-normalized diagrams exhibit enrichment in large ion lithophile elements(LILE),such as Cs and Rb,and also depleted in high field strength elements(HFSE)and heavy rare earth elements(HREE),with prominent negative anomalies of Ti,Nb,Y,and Yb,suggesting a tectonic setting of an active continental margin.The chondrite-normalized REE diagram displays enrichment of light rare earth elements(LREE;La_(N)/Yb_(N)=5.37-6.66)and small negative Eu anomalies(Eu/Eu^(*)of 0.69-0.78).Thorium enrichment implies the reaction between the mantle wedge and the melt of subducting oceanic slab,and/or subducting sediment.The role of subducted sediments along with subducted oceanic lithosphere is evident in these magmatic rocks using Ba/La versus Th/Nd and Ba/Th versus La_(N)/Sm_(N)diagrams.Theε_(Nd)(t)and(^(87)Sr/^(86)Sr)_(i)values vary between-0.1 to+0.2 and 0.70489 to 0.70501,respectively,and are compatible with parental melts from subduction of the lithospheric mantle.We suggest that the THA rocks were produced by the partial melting of the metasomatized lithospheric mantle,which corresponds to slab break-off of the northward subducted Neotethys oceanic slab in an extensional setting.The hot asthenospheric mantle upwelling triggered by the Neotethys slab break-off would severely heat the physically mixed mantle wedge peridotite and therefore caused partial melting to produce the Middle Eocene volcanic rocks in NE Iran.展开更多
Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevat...Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevated temperature conditions has been limited so far.Our study uses batch reactor experiments at 100℃ to investigate the dissolution of andesite rock samples obtained from an active geothermal reservoir in Sumatra(Indonesia).The samples are subjected to reactions with neutral-pH fluids and acidic fluids,mimicking the geochemical responses upon reinjection of geothermal fluids,either without or with dissolved acidic gases,respectively.Chemical elemental analysis reveals the release of Ca^(2+)ions into the fluids through the dissolution of feldspar.The overall dissolution rate of the rock samples is 2.4×10^(–11)to 4.2×10^(–11)mol/(m^(2)·s),based on the Si release during the initial 7 h of the experiment.The dissolution rates are about two orders of magnitude lower than those reported for basaltic rocks under similar reaction conditions.This study offers valuable insights into the potential utilization of andesite reservoirs for effective CO_(2) storage via mineralization.展开更多
Along the eastern margin of the Mesoproterozoic Namaqua metamorphic province(NMP) of southern Africa are a bimodal volcano-sedimentary succession, the ~1.13–1.10 Ga Koras Group, composed of rhyolitic porphyries and b...Along the eastern margin of the Mesoproterozoic Namaqua metamorphic province(NMP) of southern Africa are a bimodal volcano-sedimentary succession, the ~1.13–1.10 Ga Koras Group, composed of rhyolitic porphyries and basaltic andesites, and the ~1.11–1.07 Ga late-to post-tectonic granitoids of the Keimoes Suite. This review examines existing whole-rock major-and trace-element data, along with isotope chemistry(with some new isotopic data), to investigate the role these two magmatic successions played in terms of post-collisional magmatism of the eastern NMP near the boundary with the Archean Kaapvaal Craton. The Keimoes Suite comprises variably porphyritic biotite monzogranites and granodiorites, with a charnockitic member. They are metaluminous to weakly peraluminous, ferroan, and calc-alkalic. They exhibit large ion lithophile(LIL) element enrichment relative to the high field strength elements(HFSE) with depletions in Ba, Sr, Nb, P, Eu and Ti, and enrichments in Th, U and Pb. Isotopic values(ε_(Nd)(t): 2.78 to-2.95,but down to-8.58 for one granite, depleted mantle Nd model ages(T_(DM)): 1.62–1.99 Ga, but up to 2.55 Ga;initial ^(87)Sr/^(86)Sr: 0.652 82–0.771 30) suggest derivation from weakly to mildly enriched(and radiogenic)sources of Meso-to Paleoproterozoic age, the former of more juvenile character. The Koras Group is characterized by a bimodal succession of calcic to calc-alkalic, magnesian and tholeiitic basaltic andesites and mostly metaluminous to peralkaline rhyolitic porphyries. Two successions are recognised, an older, lower succession that extruded at ~1.13 Ga, and a younger, upper succession at ~1.10 Ga. The rhyolitic porphyries of both successions show similar LILE/HFSE enrichment and the same element enrichments and depletions as the Keimoes Suite granitoids. The upper succession is consistently more fractionated in terms of both whole-rock major and trace element chemistry, and, isotopically, has a greater enriched source component(ε_(Nd(t):-0.69 to-4.26;T_(DM): 1.64–2.44 Ga), relative to the lower succession(ε_(Nd(t): 0.74–5.62;T_(DM): 1.28–2.12 Ga). Crystal fractionation of plagioclase and K-feldspar appears to have played a role in bringing about compositional variation in many of the granites. These were derived from partial melting of mainly igneous with subordinate sedimentary sources from mostly lower crustal depths, although some granitoids have indications of a possible mantle source component. The lower succession of the Koras Group was derived by partial melting of subduction-influenced enriched mantle giving rise to mafic magmas that fractionated to give rise to the rhyolitic porphyries. The upper succession rhyolites were derived by crustal melting due to the input of mafic magmatism. Crystal fractionation was the main compositional driver for both successions. The Keimoes Suite granitoids and the Koras Group are associated with extensional regimes subsequent to the main deformational episode in the eastern NMP.展开更多
Changes in oceanic O-Sr-C isotopic compositions, global cooling and Asian continental aridification beginning in the Middle-Late Eocene(47-34 Ma) are considered to have been caused by the uplift of the Tibetan plateau...Changes in oceanic O-Sr-C isotopic compositions, global cooling and Asian continental aridification beginning in the Middle-Late Eocene(47-34 Ma) are considered to have been caused by the uplift of the Tibetan plateau.The specific timing and uplift mechanism,however,have long been subjects of debate.We investigated the Duogecuoren lavas of the central-western Qiangtang block,which form the largest outcrops among Cenozoic lavas in north-展开更多
Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan P...Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan Plateau, and their various damage processes in ap- pearance were carefully observed. Observation results show that damage of andesite was more serious than that of granite. Using an acoustic instrument, ultrasonic velocity was tested. The changing trends of velocity with the number of freeze-thaw cycles were analyzed, and the freeze-thaw cycle damaging the physical and mechanical properties of rocks can be seen. According to the changing trends of ultrasonic velocity with the number of freeze-thaw cycles, mechanical parameters of rocks, such as dynamic elasticity modulus, Poisson's ratio, and dynamic bulk modulus were analyzed. It is found that they all have declining trends as the number of fi'eeze-thaw cycles increases, and in particular, when the cycle number reaches a certain extent, the Poisson's ratio of rocks begins to become negative.展开更多
Granitod batholiths of I-type features (mostly granodiorites and tonalites), and particularly those forming the large plutonic associations of active continental margins and intracontinental collisional belts, repre...Granitod batholiths of I-type features (mostly granodiorites and tonalites), and particularly those forming the large plutonic associations of active continental margins and intracontinental collisional belts, represent the most outstanding magmatic episodes occurred in the continental crust. The origin of magmas, however, remains controversial. The application of principles from phase equilibria is crucial to understand the problem of granitoid magma generation. An adequate comparison between rock com- positions and experimental liquids has been addressed by using a projected compositional space in the plane F(Fe + Mg)-Anorthite-Orthoclase. Many calc-alkaline granitoid trends can be considered cotectic liquids. Assimilation of country rocks and other not-cotectic processes are identified in the projected diagram. The identification of cotectic patterns in batholith implies high temperatures of magma segregation and fractionation (or partial melting) from an intermediate (andesitic) source. The com- parison of batholiths with lower crust granulites, in terms of major-element geochemistry, yields that both represent liquids and solid residues respectively from a common andesitic system. This is compatible with magmas being formed by melting, and eventual reaction with the peridotite mantle, of subducted mOlanges that are finally relaminated as magmas to the lower crust. Thus, the off-crust generation of granitoids batholiths constitutes a new paradigm in which important geological implica- tions can be satisfactorily explained. Geochemical features of Cordilleran-type batholiths are totally compatible with this new conception.展开更多
To study the mechanical and deformation characteristics of ballastless track subgrade filled with micro-expansion fillers in a water-immersed environment, a physical model of ballastless track subgrade was constructed...To study the mechanical and deformation characteristics of ballastless track subgrade filled with micro-expansion fillers in a water-immersed environment, a physical model of ballastless track subgrade was constructed on a 1:2 scale with expansive andesite fillers. A water immersion test was carried out to model the soaking of the expansive soil foundation caused by rising groundwater. The swelling behaviors of the foundation and their influences upon the mechanics and deformations of the subgrade were analyzed. The lateral swelling pressure of the foundation and the heave of the subgrade obviously increased due to the water immersion, and the values were closely related to the overlying load and lateral restraint. The heave deformation of the double-line ballastless track subgrade showed significant nonuniformity along the lateral direction, causing the track slab to incline with a maximum inclination angle of 1.55×10^-3 deg. The heave of the foundation caused a heave in subgrade, but this transferred heave was significantly attenuated. The attenuation rate of the heave at the midline of the track slab was up to 13.38%. The attenuation characteristic can be fully utilized for the anti-heave deformation measures of railway subgrade in expansive soil areas.展开更多
In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedoge...In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedogenic processes. Two representative soil pedons, granite (P1) and andesitic basalt (P2) were selected in a mountain landform with northwest aspect. Samples for thin section preparation were taken from each horizon by Kubiena boxes or clods. Micromorphological analysis of soils derived from these two soil pedons in eastern part of Lahijan (northern Iran) were conducted based on the physicochemical and mineralogical data. Micromorphological properties were characterized using a polarized light microscope under plain and cross light. Thin section study indicated that the nature of the parent material clearly affected the content of clay formation. It also showed that clay accumulation in the Bt horizons was not only due to clay illuviation (argillan), but that strong in situ weathering of primary minerals also contributed to the enrichment of clay in soils derived from andesitic basalt. Comparing the results of clay mineralogy obtained from X-ray diffraction (XRD) with microscopic studies revealed that birefringence fabric (b-fabric) of the groundmass was partly striated due to smectitic minerals in soil of andesitic basalt (Hapludalf), whereas speckled birefringence fabric was dominant in soil of granite (Udorthent) because of the absence of these minerals. We speculate that pores of skeletal fragments or microcracks in P1 were a place for illuvial clay protection. However, the main factor for flluvial clay film disruption (striation anddeformation) was biological activity (faunal turbation and root pressure) in P1 and expandable minerals and faunal turbation in P2.展开更多
The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important...The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.展开更多
The late Aptian(118-115 Ma) continental flood basalts of the Rajmahal Volcanic Province(RVP) are part of the Kerguelen Large Igneous Province,and constitute the uppermost part of the Gondwana Supergroup on the eas...The late Aptian(118-115 Ma) continental flood basalts of the Rajmahal Volcanic Province(RVP) are part of the Kerguelen Large Igneous Province,and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin.The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts,bentonite,grey and black shale/mudstone and oolite,whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material.At the eastern margin and the north-central sector of the RVP,the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites.The pyroclastic rocks are largely felsic in composition,and comprise ignimbrite as well as coarse-grained tuff with lithic clasts,and tuff breccia with bombs,lapilli and ash that indicate explosive eruption of viscous rhyolitic magma.The rhyolites/dacites(〉68 wt.%) are separated from the andesites(〈 60 wt.%) by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma.On the other hand,partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma,crystallizing orthopyroxene at a pressure-temperature of ~3 kb/1150℃.In contrast,the northwestern sector of the RVP is devoid of felsic-intermediate rocks,and the volcaniclastic rocks are predominantly mafic(basaltic) in composition.Here,the presence of fine-grained tuffs,tuff breccia containing sideromelane shards and quenched texture,welded tuff breccia,peperite,shale/mudstone and oolite substantiates a subaqueous environment.Based on these observations,we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions.The presence of grey and black shale/mudstone in the lower one-third of the succession across the entire Rajmahal basin provides unequivocal evidence of a shallow-marine continental shelf-type environment.Alignment of the Rajmahal eruptive centers with a major N—S mid-Neoproterozoic lineament and the presence of a gravity high on the RVP suggest a tectonic control for the eruption of melts associated with the Kerguelen plume that was active in a post-Gondwana rift between India and Australia-Antarctica.展开更多
The West Congo belt contains Paleoproterozoic and Neoproterozoic Units which are deformed during Panafrican event. The Neoproterozoic Unit contains rift and post rift deposits. The rift formation is made of metabasite...The West Congo belt contains Paleoproterozoic and Neoproterozoic Units which are deformed during Panafrican event. The Neoproterozoic Unit contains rift and post rift deposits. The rift formation is made of metabasite, volcanic and volcano-sedimentary rocks. The metabasite constitutes the Nemba Complex which is considered put into place in a continental or oceanic context. Samples from Nemba Complex collected along the “Congo ocean railway realignment” are analyzed. Major elements indicate a low potassic subalkaline affinity of the samples. Classification diagrams based of major elements shows that the rocks are a tholeiitic serie constituted of andesitic basalts, sub-alkaline andesitic basalts and a sub-alkaline to alkaline basalts. Some samples with a calc-alkaline signature indicate a crustal contamination. The traces elements plots indicate that the rocks are the MORB. The spectrum of multi-elements is characteristic of continental rocks with a lithospheric origin. This is an agreement with many works on the Nemba Complex and the alkali plutons and acid volcanic rocks associated which attribute there a rift context.展开更多
In order to study the microscopic pore characteristics of andesite reservoir and the effect of mineral content on the andesite pore,this study takes the andesite of the Huoshiling Formation in Longfengshan of Changlin...In order to study the microscopic pore characteristics of andesite reservoir and the effect of mineral content on the andesite pore,this study takes the andesite of the Huoshiling Formation in Longfengshan of Changling fault depression,Songliao Basin as a subject.The andesite reservoir space was discerned through the observation of cores and casting thin sections.Besides,the pore size distribution of andesites and their mineral contents were quantitatively characterized by high-pressure mercury injection,nitrogen adsorption and XRD,respectively.The results show that:(1)There are various types of reservoir space in andesites,including vesicles,amygdule,intergranular pores,matrix dissolution pores and dissolution pores of amygdala,and three types of fractures including dissolution,structural and explosion fractures.(2)The pore size distribution of andesite is complex.The main pore size of andesite is mid-pore(10-20 nm)with some large-pores(>50 nm).Mid-pore and large-pore provide the main specific surface area,which are the main space for gas storage.(3)The andesite reservoir space in the study area is mainly controlled by dissolution,as supported by the relationship between the change of mineral content and porosity evolution.The porosity of andesites decreases with the increase of quartz and chlorite content,but increases with the increase of soluble mineral,e.g.,feldspar content.展开更多
An INAA technique was applied to determine simultaneously abundances of rare-earth, transitional metal, large-ion lithophile and high field strength elements in volcanic rocks from Tangbale ophiolite belt. The detaile...An INAA technique was applied to determine simultaneously abundances of rare-earth, transitional metal, large-ion lithophile and high field strength elements in volcanic rocks from Tangbale ophiolite belt. The detailed study on trace element geochemistry shows that the volcanic rocks were erupted in the back-arc basin. The volcanic rocks of early and middle stages of the expanding period of the basin have low REE and other incompatible element contents. At early and late stages of closing period of the basin, alkalic basalts, basaltic andesites and andesites were erupted in which light REE and other incompatible elements were enriched.展开更多
The Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is imp...The Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various propoitions, orthopyroxene, clinopyroxene, olivine, amphibole and titanomagnetite. The total elemental composition of the bulk samples (including trace elements and heavy metals) was determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroelastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic deposits were lower than those of the leached samples, but the alteration indices (chemical and plagioclase) were slightly higher in the moist compared to the leached pyroelastic deposits.展开更多
Systematical analyses of data from GEOROC and PetDB database show that large amount of Cenozoic andesites occurred in the various oceanic environments such as mid-oceanic ridge,plumerelated island and oceanic arc.In t...Systematical analyses of data from GEOROC and PetDB database show that large amount of Cenozoic andesites occurred in the various oceanic environments such as mid-oceanic ridge,plumerelated island and oceanic arc.In this study,we employed the geochemical data of 351 mid-ocean ridge andesites(MORA),2539 plume-related andesites(PRA)and 3488 oceanic arc andesites(OAA)from the database to discuss the relationship between andesite tectonic settings and their geochemical features,thereby making an attempt to construct tectonic discrimination diagrams.Based on the data-driven pattern,all available elements were employed to derive logratios for the possible coordinates,and the overlap-rate calculation was adopted to evaluate the discrimination effect of more than 330000 prospective diagrams.Finally,four tectonic discrimination diagrams have been successfully established to identify MORA,PRA and OAA,which can be utilized to identify the original settings of andesite with an age range from Cenozoic to Archean a certain extent.Of these diagrams,PRA is mainly distinguished by high LREE/HREE ratio due to enriched mantle source.Whereas,OAA is mainly characterized by high LILE/HFSE ratio,which reveals that fluids derived from subducted slab play an important role in forming oceanic arc andesites.Consequently,the petrogenesis of andesites is closely related to their tectonic settings.However,it should be noted that those andesites formed in both continental and oceanic environments cannot be effectively distinguished using these diagrams.We strongly recommend integrating the discrimination diagrams result with other geological information to reach a comprehensive interpretation of evolution history with those ancient andesites.This paper presents a case study which suggests that data-driven method is a powerful tool for solving geological problems in this’big data’era.展开更多
基金funded by the National Natural Science Foundation of China (No. 41272093)Natural Science Foundation of Jilin Province (No. 20180101089JC)Key Projects of Science and Technology Development Plan of Jilin Province (No. 20100445)。
文摘The Sandaowanzi gold deposit is an extremely Au-rich deposit in the Northern Great Hinggan Range in recent years.Zircon U-Pb geochronology,Hf isotope analysis,and the geochemistry of andesites of the Longjiang Formation from the Sandaowanzi gold deposit were used to investigate the origin,magmatic evolution as well as mineralization and tectonic setting of the Early Cretaceous epithermal gold deposits in the northern Great Hinggan Range area.Zircon U-Pb dating reveals an emplacement age of 123.4±0.3 Ma,indicating that the andesites of the Sandaowanzi gold deposit was formed during the Early Cretaceous.The andesites are enriched in light rare earth elements relative to heavy rare earth elements and have weak negative Eu anomalies(δEu=0.76-0.90).The rocks are also enriched in large-ion lithophile elements,such as Rb,Ba,Th,U,and K,and depleted in the high-field-strength elements,such as Nb,Ta,and P.These characteristics are typical of volcanic rocks related to subduction.Igneous zircons from the andesite samples have relatively homogeneous Hf isotope ratios,176Hf/177Hf values of 0.282343-0.282502,εHf(t)values of-12.58 to-6.95,and two-stage model ages(TDM2)of 1743-1431 Ma.The characteristics of the andesites of the Longjiang Formation are consistent with derivation from partial melting of enriched mantle wedge metasomatized by subducted-slab-derived fluids.These rocks formed in an extensional environment associated with the closure of the Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Plate.Mineralization occurred towards the end of volcanism,and the magmatic activity and mineralization are products of the same geodynamic setting.
基金supported by funds from the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB41000000)the National Natural Science Foundation of China(41888101,41703025)the Fundamental Research Funds for the Central Universities(WK2080000128)。
文摘Continental crust in average exhibits a similar composition in both major and trace elements to andesites along active continental margins.For this reason,andesitic magmatism above oceanic subduction zones is considered to have played a key role in the generation of continental crust along convergent plate boundaries.With respect to the origin of andesites themselves,however,there is still a hot debate on how they have acquired their geochemcial compositions.The debate is mainly centralized on the relative contributions of crustal contamination,magma differentiation and source mixing,which reaches an impasse in the past decades.The essential reason for this kind of debates is that these three mechanisms only can account for some of the geochemical observations for andesites,leading to insufficient discrimination among them.Nevertheless,the geochemical features of andesites are primarily controled from early to late by the composition of their source rocks in addition to partial melting and magma differentiation processes.If source mixing and partial melting processes in the early stage of andesite magmatism can account for the first-order geochemical features of andesites,there is no need to invoke the late processes of magma differentiation and crustal contamination for andesite petrogenesis.This is illustrated by quantitative forward modeling of the geochemical data for Quaternary andesites from the Andean arc in South America based on an integrated interpretation of these data.The modeling has run with four steps from early to late:(1)dehydration of the subducting oceanic crust at forearc depths;(2)partial melting of the subducting terrigenous sediment and altered oceanic basalt at subarc depths to produce hydrous felsic melts;(3)the generation of basaltic metasomatites(e.g.,Si-excess pyroxenite)in the mantle wedge through reaction of the mantle wedge peridotite with large amounts of the hydrous felsic melts;(4)the production of andesitic melts by partial melting of the basaltic metasomatites.The results not only testify the hypothesis that the trace element and radiogenic isotope compositions of andesites can be directly produced by the source mixing and mantle melting but also demonstrate that partial melting of the basaltic metasomatites can reproduce the lithochemical composition of andesites.The compositional variations of Andean andesites within a single volcanic zone and among different volcanic zones can be explained by incorporating different amounts of heterogeneous hydrous felsic melts into their mantle sources,followed by different degree of partial melting under different pressures and temperatures.Therefore,the source mixing and partial melting processes at subarc depths can account for the first-order geochemical features of Andean andesites.In this regard,it may be not necessary for andesite petrogenesis to invoke the significant contributions from the processes of magma differentiation and crustal contamination.
基金Supported by the National Natural Science Foundation of China Nos.42230303,42430305 and 42302236Graduate Innovation Fund of Jilin University Number:2024CX109.
文摘Since the Paleozoic,the tectonic evolution of northeastern Eurasia has been primarily influenced by the Paleo-Asian Ocean and the Paleo-Pacific tectonic domains.However,the spatial and temporal frameworks,as well as the timing of the tectonic transition between these two oceanic domains,remain unclear.For addressing these issues,we present petrological,geochronological,and geochemical data for andesite and sandstone samples from the Seluohe Group along the Jilin-Yanji Suture between the Jiamusi-Khanka Block and the North China Craton.The geochemical results indicate that the andesite sample is high-Mg andesite.Its magma source was generated by the metasomatized mantle wedge influenced by fluids derived from the subducted slab in a continental island arc setting.The high-Mg andesite gives the crystallization ages of Early Triassic(249±3 Ma).The sandstone is immature greywacke with a maximum depositional age of Early Triassic(247±1 Ma),and its sediments primarily originate from concurrent magmatic rocks within a juvenile continental arc.Based on our new findings,we propose that the Seluohe Group represents an Early Triassic volcanic-sedimentary association with continental island arc characteristics associated with the southwestward subduction of the Heilongjiang Ocean.We identified a sedimentary basin intimately associated with one or more continental arcs along the northeastern edge of the North China Craton.We suggest that the southwestward subduction of the Jilin-Heilongjiang Ocean in the Early Mesozoic accounts for this continental arc setting.There is a distinct temporal gap between the closure of the Paleo-Asian Ocean(ca.260 Ma)and the onset of Paleo-Pacific plate subduction(234–220 Ma),which is essentially coeval with the southwestward subduction of the Jilin-Heilongjiang Ocean between 255 Ma and 239 Ma.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.40133020 and 40373013)Chinese Ministry of Education(IRTO441,306021).
文摘85 volcanic rocks of the Yixian Formation from the Sihetun type section werecollected and analyzed for geochemical and isotopic compositions. Major element compositionsindicate that the Sihetun volcanic rocks are high magnesium andesites with some basalts occurring atthe bottom of section. The Sihetun high magnesium andesites (SiO_2 = 52.82-59.31 wt%, Al_2O_3=14.15-16.35wt%) show many characteristics of adakites such as depletion in heavy rare-earth elements(HREE; Yb = 1.03-1.88 μg/g) and Y(12-20 μg/g) and high Sr (620-1323 μg/g) and Sr/Y(32-88), withhigh La_N/Yb_N ratio (10-25). They share similar major and trace element characteristics to volcanicrocks from the Xinglonggou Formation except their lower Nd isotope ratios (^(143)Nd/^(144)Nd(130Ma) = 0.5118-0.5119, ε_(Nd) (130Ma) = -11.6-13.8, ^(87)Sr/^(86)Sr (130 Ma) = 0.7058-0.7064.They were interpreted in a way that eclogite that formed at the base of thickened Archean lowercrust of the North China craton foundered into the convecting mantle and subsequently melted andinteracted with peridotite. However, compared to the Xinglonggou volcanic rocks, the source of theSihetun magma contained more ancient continental crustal material in order to explain its evolved Ndisotopes. The age of the Sihetun Formation was 120 to 130 Ma, and this indicates that delaminationlasted to the early Cretaceous period. The Sr contents and Sr/Y ratios of the Sihetun high-Mgandesites show significant negative correlations with SiO_2 for samples with SiO_2 】 56%. Thesesuggest that the Sr and Sr/Y values were reduced due to fractional crystallization of plagioclase.Accordingly, the effect of crystallization on volcanic Sr and Sr/Y ratio has to be taken intoaccount.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q08-3-4)the project from the State Key Laboratory for Mineral Deposits Research,Nanjing University(Grant No.15-09-08)
文摘High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA's genesis inferred from petrolog- ical and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250-1400℃ and high-pressure of 2.0-5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth's mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important pro- cess to generate the HMAs within crations.
文摘The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these rocks and they also show porphyritic,vitrophyric,and vitroglomeroporphyric textures.Plagioclase,clinopyroxene,±orthopyroxene are the major mineral phases.The SHRIMP U-Pb zircon dating yielded an age of 41.00±0.69 Ma for the rocks(Middle Eocene,Bartonian).Geochemically,they are of medium-to high-K calc-alkaline affinity.Primitive mantle-normalized diagrams exhibit enrichment in large ion lithophile elements(LILE),such as Cs and Rb,and also depleted in high field strength elements(HFSE)and heavy rare earth elements(HREE),with prominent negative anomalies of Ti,Nb,Y,and Yb,suggesting a tectonic setting of an active continental margin.The chondrite-normalized REE diagram displays enrichment of light rare earth elements(LREE;La_(N)/Yb_(N)=5.37-6.66)and small negative Eu anomalies(Eu/Eu^(*)of 0.69-0.78).Thorium enrichment implies the reaction between the mantle wedge and the melt of subducting oceanic slab,and/or subducting sediment.The role of subducted sediments along with subducted oceanic lithosphere is evident in these magmatic rocks using Ba/La versus Th/Nd and Ba/Th versus La_(N)/Sm_(N)diagrams.Theε_(Nd)(t)and(^(87)Sr/^(86)Sr)_(i)values vary between-0.1 to+0.2 and 0.70489 to 0.70501,respectively,and are compatible with parental melts from subduction of the lithospheric mantle.We suggest that the THA rocks were produced by the partial melting of the metasomatized lithospheric mantle,which corresponds to slab break-off of the northward subducted Neotethys oceanic slab in an extensional setting.The hot asthenospheric mantle upwelling triggered by the Neotethys slab break-off would severely heat the physically mixed mantle wedge peridotite and therefore caused partial melting to produce the Middle Eocene volcanic rocks in NE Iran.
基金Engineering and Physical Sciences Research CouncilGrant/Award Number:EP/M000567/1。
文摘Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevated temperature conditions has been limited so far.Our study uses batch reactor experiments at 100℃ to investigate the dissolution of andesite rock samples obtained from an active geothermal reservoir in Sumatra(Indonesia).The samples are subjected to reactions with neutral-pH fluids and acidic fluids,mimicking the geochemical responses upon reinjection of geothermal fluids,either without or with dissolved acidic gases,respectively.Chemical elemental analysis reveals the release of Ca^(2+)ions into the fluids through the dissolution of feldspar.The overall dissolution rate of the rock samples is 2.4×10^(–11)to 4.2×10^(–11)mol/(m^(2)·s),based on the Si release during the initial 7 h of the experiment.The dissolution rates are about two orders of magnitude lower than those reported for basaltic rocks under similar reaction conditions.This study offers valuable insights into the potential utilization of andesite reservoirs for effective CO_(2) storage via mineralization.
文摘Along the eastern margin of the Mesoproterozoic Namaqua metamorphic province(NMP) of southern Africa are a bimodal volcano-sedimentary succession, the ~1.13–1.10 Ga Koras Group, composed of rhyolitic porphyries and basaltic andesites, and the ~1.11–1.07 Ga late-to post-tectonic granitoids of the Keimoes Suite. This review examines existing whole-rock major-and trace-element data, along with isotope chemistry(with some new isotopic data), to investigate the role these two magmatic successions played in terms of post-collisional magmatism of the eastern NMP near the boundary with the Archean Kaapvaal Craton. The Keimoes Suite comprises variably porphyritic biotite monzogranites and granodiorites, with a charnockitic member. They are metaluminous to weakly peraluminous, ferroan, and calc-alkalic. They exhibit large ion lithophile(LIL) element enrichment relative to the high field strength elements(HFSE) with depletions in Ba, Sr, Nb, P, Eu and Ti, and enrichments in Th, U and Pb. Isotopic values(ε_(Nd)(t): 2.78 to-2.95,but down to-8.58 for one granite, depleted mantle Nd model ages(T_(DM)): 1.62–1.99 Ga, but up to 2.55 Ga;initial ^(87)Sr/^(86)Sr: 0.652 82–0.771 30) suggest derivation from weakly to mildly enriched(and radiogenic)sources of Meso-to Paleoproterozoic age, the former of more juvenile character. The Koras Group is characterized by a bimodal succession of calcic to calc-alkalic, magnesian and tholeiitic basaltic andesites and mostly metaluminous to peralkaline rhyolitic porphyries. Two successions are recognised, an older, lower succession that extruded at ~1.13 Ga, and a younger, upper succession at ~1.10 Ga. The rhyolitic porphyries of both successions show similar LILE/HFSE enrichment and the same element enrichments and depletions as the Keimoes Suite granitoids. The upper succession is consistently more fractionated in terms of both whole-rock major and trace element chemistry, and, isotopically, has a greater enriched source component(ε_(Nd(t):-0.69 to-4.26;T_(DM): 1.64–2.44 Ga), relative to the lower succession(ε_(Nd(t): 0.74–5.62;T_(DM): 1.28–2.12 Ga). Crystal fractionation of plagioclase and K-feldspar appears to have played a role in bringing about compositional variation in many of the granites. These were derived from partial melting of mainly igneous with subordinate sedimentary sources from mostly lower crustal depths, although some granitoids have indications of a possible mantle source component. The lower succession of the Koras Group was derived by partial melting of subduction-influenced enriched mantle giving rise to mafic magmas that fractionated to give rise to the rhyolitic porphyries. The upper succession rhyolites were derived by crustal melting due to the input of mafic magmatism. Crystal fractionation was the main compositional driver for both successions. The Keimoes Suite granitoids and the Koras Group are associated with extensional regimes subsequent to the main deformational episode in the eastern NMP.
文摘Changes in oceanic O-Sr-C isotopic compositions, global cooling and Asian continental aridification beginning in the Middle-Late Eocene(47-34 Ma) are considered to have been caused by the uplift of the Tibetan plateau.The specific timing and uplift mechanism,however,have long been subjects of debate.We investigated the Duogecuoren lavas of the central-western Qiangtang block,which form the largest outcrops among Cenozoic lavas in north-
基金supported in part by the Important Orientation Projects of the CAS (KZCX2-YW-Q03-04)the Grant of the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB2-10)Natural Science Foundation of China (Grant No. 40625004,40821001)
文摘Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan Plateau, and their various damage processes in ap- pearance were carefully observed. Observation results show that damage of andesite was more serious than that of granite. Using an acoustic instrument, ultrasonic velocity was tested. The changing trends of velocity with the number of freeze-thaw cycles were analyzed, and the freeze-thaw cycle damaging the physical and mechanical properties of rocks can be seen. According to the changing trends of ultrasonic velocity with the number of freeze-thaw cycles, mechanical parameters of rocks, such as dynamic elasticity modulus, Poisson's ratio, and dynamic bulk modulus were analyzed. It is found that they all have declining trends as the number of fi'eeze-thaw cycles increases, and in particular, when the cycle number reaches a certain extent, the Poisson's ratio of rocks begins to become negative.
基金Financial support for this research comes from Grants P09-RNM-05378 and CGL2010-22022-C02-01
文摘Granitod batholiths of I-type features (mostly granodiorites and tonalites), and particularly those forming the large plutonic associations of active continental margins and intracontinental collisional belts, represent the most outstanding magmatic episodes occurred in the continental crust. The origin of magmas, however, remains controversial. The application of principles from phase equilibria is crucial to understand the problem of granitoid magma generation. An adequate comparison between rock com- positions and experimental liquids has been addressed by using a projected compositional space in the plane F(Fe + Mg)-Anorthite-Orthoclase. Many calc-alkaline granitoid trends can be considered cotectic liquids. Assimilation of country rocks and other not-cotectic processes are identified in the projected diagram. The identification of cotectic patterns in batholith implies high temperatures of magma segregation and fractionation (or partial melting) from an intermediate (andesitic) source. The com- parison of batholiths with lower crust granulites, in terms of major-element geochemistry, yields that both represent liquids and solid residues respectively from a common andesitic system. This is compatible with magmas being formed by melting, and eventual reaction with the peridotite mantle, of subducted mOlanges that are finally relaminated as magmas to the lower crust. Thus, the off-crust generation of granitoids batholiths constitutes a new paradigm in which important geological implica- tions can be satisfactorily explained. Geochemical features of Cordilleran-type batholiths are totally compatible with this new conception.
基金funding received from the National Natural Science Foundation of China(Grant Nos.51778641,51878667 and 51678571)the Fundamental Research Funds for the Central Universities of Central South University(2020zzts401)in support of this study.
文摘To study the mechanical and deformation characteristics of ballastless track subgrade filled with micro-expansion fillers in a water-immersed environment, a physical model of ballastless track subgrade was constructed on a 1:2 scale with expansive andesite fillers. A water immersion test was carried out to model the soaking of the expansive soil foundation caused by rising groundwater. The swelling behaviors of the foundation and their influences upon the mechanics and deformations of the subgrade were analyzed. The lateral swelling pressure of the foundation and the heave of the subgrade obviously increased due to the water immersion, and the values were closely related to the overlying load and lateral restraint. The heave deformation of the double-line ballastless track subgrade showed significant nonuniformity along the lateral direction, causing the track slab to incline with a maximum inclination angle of 1.55×10^-3 deg. The heave of the foundation caused a heave in subgrade, but this transferred heave was significantly attenuated. The attenuation rate of the heave at the midline of the track slab was up to 13.38%. The attenuation characteristic can be fully utilized for the anti-heave deformation measures of railway subgrade in expansive soil areas.
基金supported by the Soil Science department, faculty of Agriculture,University of Guilan
文摘In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedogenic processes. Two representative soil pedons, granite (P1) and andesitic basalt (P2) were selected in a mountain landform with northwest aspect. Samples for thin section preparation were taken from each horizon by Kubiena boxes or clods. Micromorphological analysis of soils derived from these two soil pedons in eastern part of Lahijan (northern Iran) were conducted based on the physicochemical and mineralogical data. Micromorphological properties were characterized using a polarized light microscope under plain and cross light. Thin section study indicated that the nature of the parent material clearly affected the content of clay formation. It also showed that clay accumulation in the Bt horizons was not only due to clay illuviation (argillan), but that strong in situ weathering of primary minerals also contributed to the enrichment of clay in soils derived from andesitic basalt. Comparing the results of clay mineralogy obtained from X-ray diffraction (XRD) with microscopic studies revealed that birefringence fabric (b-fabric) of the groundmass was partly striated due to smectitic minerals in soil of andesitic basalt (Hapludalf), whereas speckled birefringence fabric was dominant in soil of granite (Udorthent) because of the absence of these minerals. We speculate that pores of skeletal fragments or microcracks in P1 were a place for illuvial clay protection. However, the main factor for flluvial clay film disruption (striation anddeformation) was biological activity (faunal turbation and root pressure) in P1 and expandable minerals and faunal turbation in P2.
基金Supported by National Natural Science Foundation of China(Grant Nos.51608521,51809264)Beijing Municipal Major Achievements Transformation and Industrialization Projects of Central Universities(Grant No.ZDZH20141141301)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYLJ06).
文摘The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.
文摘The late Aptian(118-115 Ma) continental flood basalts of the Rajmahal Volcanic Province(RVP) are part of the Kerguelen Large Igneous Province,and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin.The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts,bentonite,grey and black shale/mudstone and oolite,whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material.At the eastern margin and the north-central sector of the RVP,the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites.The pyroclastic rocks are largely felsic in composition,and comprise ignimbrite as well as coarse-grained tuff with lithic clasts,and tuff breccia with bombs,lapilli and ash that indicate explosive eruption of viscous rhyolitic magma.The rhyolites/dacites(〉68 wt.%) are separated from the andesites(〈 60 wt.%) by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma.On the other hand,partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma,crystallizing orthopyroxene at a pressure-temperature of ~3 kb/1150℃.In contrast,the northwestern sector of the RVP is devoid of felsic-intermediate rocks,and the volcaniclastic rocks are predominantly mafic(basaltic) in composition.Here,the presence of fine-grained tuffs,tuff breccia containing sideromelane shards and quenched texture,welded tuff breccia,peperite,shale/mudstone and oolite substantiates a subaqueous environment.Based on these observations,we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions.The presence of grey and black shale/mudstone in the lower one-third of the succession across the entire Rajmahal basin provides unequivocal evidence of a shallow-marine continental shelf-type environment.Alignment of the Rajmahal eruptive centers with a major N—S mid-Neoproterozoic lineament and the presence of a gravity high on the RVP suggest a tectonic control for the eruption of melts associated with the Kerguelen plume that was active in a post-Gondwana rift between India and Australia-Antarctica.
文摘The West Congo belt contains Paleoproterozoic and Neoproterozoic Units which are deformed during Panafrican event. The Neoproterozoic Unit contains rift and post rift deposits. The rift formation is made of metabasite, volcanic and volcano-sedimentary rocks. The metabasite constitutes the Nemba Complex which is considered put into place in a continental or oceanic context. Samples from Nemba Complex collected along the “Congo ocean railway realignment” are analyzed. Major elements indicate a low potassic subalkaline affinity of the samples. Classification diagrams based of major elements shows that the rocks are a tholeiitic serie constituted of andesitic basalts, sub-alkaline andesitic basalts and a sub-alkaline to alkaline basalts. Some samples with a calc-alkaline signature indicate a crustal contamination. The traces elements plots indicate that the rocks are the MORB. The spectrum of multi-elements is characteristic of continental rocks with a lithospheric origin. This is an agreement with many works on the Nemba Complex and the alkali plutons and acid volcanic rocks associated which attribute there a rift context.
基金Supported by Project of National Natural Science Foundation of China(Nos.41972313,41790453).
文摘In order to study the microscopic pore characteristics of andesite reservoir and the effect of mineral content on the andesite pore,this study takes the andesite of the Huoshiling Formation in Longfengshan of Changling fault depression,Songliao Basin as a subject.The andesite reservoir space was discerned through the observation of cores and casting thin sections.Besides,the pore size distribution of andesites and their mineral contents were quantitatively characterized by high-pressure mercury injection,nitrogen adsorption and XRD,respectively.The results show that:(1)There are various types of reservoir space in andesites,including vesicles,amygdule,intergranular pores,matrix dissolution pores and dissolution pores of amygdala,and three types of fractures including dissolution,structural and explosion fractures.(2)The pore size distribution of andesite is complex.The main pore size of andesite is mid-pore(10-20 nm)with some large-pores(>50 nm).Mid-pore and large-pore provide the main specific surface area,which are the main space for gas storage.(3)The andesite reservoir space in the study area is mainly controlled by dissolution,as supported by the relationship between the change of mineral content and porosity evolution.The porosity of andesites decreases with the increase of quartz and chlorite content,but increases with the increase of soluble mineral,e.g.,feldspar content.
文摘An INAA technique was applied to determine simultaneously abundances of rare-earth, transitional metal, large-ion lithophile and high field strength elements in volcanic rocks from Tangbale ophiolite belt. The detailed study on trace element geochemistry shows that the volcanic rocks were erupted in the back-arc basin. The volcanic rocks of early and middle stages of the expanding period of the basin have low REE and other incompatible element contents. At early and late stages of closing period of the basin, alkalic basalts, basaltic andesites and andesites were erupted in which light REE and other incompatible elements were enriched.
基金supported by the Directorate of Higher Education Department of National Education of Republic of Indonesia under Fundamental Research Grant no: 005/SP3/PP/ DP2M/II/2006-2007, granted to the first authorthe Ministry of Research and Technology of the Republic Indonesia (Fundamental Research Intensive Program with grant no. 97/M/Kp/XI/ 2007) granted to first and second authors
文摘The Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various propoitions, orthopyroxene, clinopyroxene, olivine, amphibole and titanomagnetite. The total elemental composition of the bulk samples (including trace elements and heavy metals) was determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroelastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic deposits were lower than those of the leached samples, but the alteration indices (chemical and plagioclase) were slightly higher in the moist compared to the leached pyroelastic deposits.
基金jointly supported by the National Natural Science Foundations of China(Nos.41772189,41421002)the MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an,China(No.201210133)。
文摘Systematical analyses of data from GEOROC and PetDB database show that large amount of Cenozoic andesites occurred in the various oceanic environments such as mid-oceanic ridge,plumerelated island and oceanic arc.In this study,we employed the geochemical data of 351 mid-ocean ridge andesites(MORA),2539 plume-related andesites(PRA)and 3488 oceanic arc andesites(OAA)from the database to discuss the relationship between andesite tectonic settings and their geochemical features,thereby making an attempt to construct tectonic discrimination diagrams.Based on the data-driven pattern,all available elements were employed to derive logratios for the possible coordinates,and the overlap-rate calculation was adopted to evaluate the discrimination effect of more than 330000 prospective diagrams.Finally,four tectonic discrimination diagrams have been successfully established to identify MORA,PRA and OAA,which can be utilized to identify the original settings of andesite with an age range from Cenozoic to Archean a certain extent.Of these diagrams,PRA is mainly distinguished by high LREE/HREE ratio due to enriched mantle source.Whereas,OAA is mainly characterized by high LILE/HFSE ratio,which reveals that fluids derived from subducted slab play an important role in forming oceanic arc andesites.Consequently,the petrogenesis of andesites is closely related to their tectonic settings.However,it should be noted that those andesites formed in both continental and oceanic environments cannot be effectively distinguished using these diagrams.We strongly recommend integrating the discrimination diagrams result with other geological information to reach a comprehensive interpretation of evolution history with those ancient andesites.This paper presents a case study which suggests that data-driven method is a powerful tool for solving geological problems in this’big data’era.