期刊文献+
共找到23,438篇文章
< 1 2 250 >
每页显示 20 50 100
Green anchors enhance slope stability:mechanisms and efficacy in reinforcement
1
作者 Zhihao Du Yu Zhang +3 位作者 Haifeng Huo Sheng Shi Ruidong Li Bingbing Han 《Earthquake Research Advances》 2025年第3期100-109,共10页
As a primary slope stabilization technique,anchor support encompasses traditional engineering anchors,green anchors,and ecological restoration methods.This review synthesizes two decades of literature to evaluate thes... As a primary slope stabilization technique,anchor support encompasses traditional engineering anchors,green anchors,and ecological restoration methods.This review synthesizes two decades of literature to evaluate these approaches.Current research disproportionately focuses on engineering anchors,while green anchor systems remain less studied despite their dual advantages:reduced labor/economic costs and environmental benefits.Notably,most green anchor studies originate from low-altitude plains,with minimal attention to high-altitude cold-arid regions such as plateaus.We therefore identify slope reinforcement using green anchors in plateau environments as a critical emerging research frontier. 展开更多
关键词 anchor support Engineering anchor support Green anchor Plateau areas
在线阅读 下载PDF
Biaxial compression mechanical properties of NPR anchor solid under different crack dip angles
2
作者 ZHANG Yong ZHANG Junyao +1 位作者 SUN Xiaoming CUI Li 《Journal of Mountain Science》 2025年第9期3493-3509,共17页
With the rapid development of deep resource extraction and underground space construction,the design of anchored support systems for jointed rock masses in complex stress environments faces significant challenges.This... With the rapid development of deep resource extraction and underground space construction,the design of anchored support systems for jointed rock masses in complex stress environments faces significant challenges.This study investigates the influence of prefabricated crack dip angles on the mechanical properties of anchored rock masses in deep soft rock roadways.By constructing similarity models of NPR(Negative Poisson’s Ratio)and PR(Positive Poisson’s Ratio)anchored solids,biaxial compression experiments under varying crack dip angles were conducted.Strain gauges,3D Digital Image Correlation(3D DIC),and acoustic emission monitoring were employed to systematically analyze the strength characteristics,deformation-damage evolution,and energy dissipation mechanisms of the two types of anchor systems.The results show that:(1)The stress-strain curves of anchored solids with prefabricated cracks exhibit a distinct bimodal characteristic.Compared to PR anchors,NPR anchors show 20%and 23%improvements in peak strength and elastic modulus,respectively,with residual strength enhanced by up to 34%.(2)Owing to high pre-tightening force and large deformation capacity,NPR anchors maintain superior integrity under increasing crack dip angles,demonstrating more uniform free-surface displacement and localized shear-tensile composite crack patterns.(3)Acoustic emission analysis reveals that NPR anchors exhibit higher cumulative energy absorption(300%improvement over PR anchors)and lack low-rate energy development phases,indicating enhanced ductility and impact resistance at high crack dip angles.(4)Crack dip angle critically governs failure mechanisms by modulating the connectivity between shear cracks and prefabricated fissures:bimodal effects dominate at low angles,while vertical tensile crack propagation replaces bimodal behavior at high angles.The study proposes prioritizing NPR anchor cables in deep engineering applications and optimizing support parameters based on crack dip angles to mitigate stress concentration and ensure the long-term stability of surrounding rock. 展开更多
关键词 anchor solid NPR anchor cable Crack dip angle Mechanical properties Similarity model
原文传递
A modified guidewire technique for managing nondeflating anchoring balloon transurethral catheters in emergency procedures
3
作者 Weiting Chen Min Tang +1 位作者 Lihui Chen Ying Liu 《World Journal of Emergency Medicine》 2025年第6期632-634,共3页
Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularl... Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularly prevalent among hospitalized patients,facilitating continuous urinary drainage. 展开更多
关键词 precise urine output monitoringtransurethral catheters nondeflating anchoring balloon medical devices anchoring balloons urinary drainagebladder irrigationor urinary catheters urinary drainage modified guidewire technique
暂未订购
A Concept Solution of Anchored Diaphragm Wall in Central Part of Budva Town
4
作者 Helidon Kokona 《Journal of Civil Engineering and Architecture》 2025年第10期484-492,共9页
In this paper is presented a concept solution and acceptance test application procedure of deep pit protection structure,intended for three underground levels of residential building:A,B,C,D,block 10C,Budva,Montenegro... In this paper is presented a concept solution and acceptance test application procedure of deep pit protection structure,intended for three underground levels of residential building:A,B,C,D,block 10C,Budva,Montenegro.The anchored wall used consist of nongravity cantilevered walls with three levels of ground anchors.Nongravity cantilevered walls employ continuous walls constructed in slurry trenches(i.e.,slurry(diaphragm)walls),e.g vertical elements that are drilled to depths below the finished excavation grade.For those nongravity cantilevered walls,support is provided through the shear and bending stiffness of the vertical wall elements and passive resistance from the soil below the finished excavation grade.Anchored wall support relies on these components as well as lateral resistance provided by the ground anchors to resist horizontal pressures(e.g.,earth,water,external loads)acting on the wall.Anchored wall analysed and applied is temporary supporting structure necessary for the excavation and erection of the underground structure part up to ground surface level.Temporary ground anchors lifetime is up to two years.Dynamic loads are not considered. 展开更多
关键词 anchored retaining walls slurry walls deep excavation support ground anchors
在线阅读 下载PDF
Legal Regulation of Head Anchors in Live-Streaming E-Commerce from the Perspective of Duty of Care 被引量:2
5
作者 Ma Zhiguo Jia Jinrun Zhang Xiaohao 《科技与法律(中英文)》 2025年第2期125-137,共13页
The integration of the digital economy with the traditional sales industry has prompted the robust growth of e-commerce.Live-streaming e-commerce,as a novel business model,has gained immense popularity.However,is⁃sues... The integration of the digital economy with the traditional sales industry has prompted the robust growth of e-commerce.Live-streaming e-commerce,as a novel business model,has gained immense popularity.However,is⁃sues of regulatory loopholes and inefficacy continue to surface.In live-streaming e-commerce,the head anchor,as host of the live-streaming rooms,wields significant influence in determining the goods to be showcased and marketed.Such influence expands risks such as infringement of intellectual property rights.Yet the uncertainty in law concerning the identity of head anchors results in a lack of accountability.Current norms are inadequate in constraining the group of head anchors.Drawing on the principles of risk control,the alignment between benefit and risk,and the theory of so⁃cial cost control,this paper argues that it is both justifiable and feasible to impose a duty to exercise reasonable care on head anchors.To effectively enshrine this duty in law,it is of great importance to redefine the mechanism of identifying the duty of care of head anchors in live-streaming e-commerce.In particular,the contents of the duty of care under⁃taken by head anchors and the consequences of breaching such a duty of care should be clarified. 展开更多
关键词 head anchor live-streaming e-commerce digital economy duty of care
在线阅读 下载PDF
Roof deformation of the Beishan Rock Carvings with negative Poisson's ratio anchor support under varied precipitation conditions 被引量:1
6
作者 YANG Peixi TAO Zhigang +1 位作者 YANG Xiaojie LI Xiaodan 《Journal of Mountain Science》 2025年第8期3078-3091,共14页
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C... Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures. 展开更多
关键词 Grotto stability Physical model experiment RAINFALL NPR anchor(cable) On-site monitoring
原文传递
An epitaxial surface heterostructure anchoring approach for high-performance Ni-rich layered cathodes 被引量:1
7
作者 Weili Sun Qingqing Zhang +8 位作者 Xiao-Guang Sun Cheng Li Yongsheng Huang Wenyu Mu Junbin Tan Jianlin Li Kai Liu Shijian Zheng Sheng Dai 《Journal of Energy Chemistry》 2025年第6期158-169,I0005,共13页
Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fati... Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs. 展开更多
关键词 Ni-rich layered oxides Rock-salt nanolayer Heteroatom anchoring Lattice oxygen reversibility Lithium-ion batteries
在线阅读 下载PDF
Influence of microalloying element vanadium on microstructure and mechanical properties of anchor steel
8
作者 Zhen Zhang Hang Liu +6 位作者 Chao-yun Yang Zhen Zhang Xiao-wei Chu Yi-kun Luan Xing Li Lu-han Hao Xing-zhong Zhang 《Journal of Iron and Steel Research International》 2025年第6期1650-1661,共12页
The effect of vanadium(V)element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V content... The effect of vanadium(V)element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V contents.The results indicated that the trace addition of V element can generate dispersed VC nanoparticles in the anchor steel and then refine microstructure by inhibiting austenite grain growth.The increase in V content leads to the formation of a larger amount of smaller VC nanoparticles and more refined microstructure.Moreover,the increasing V content in anchor steel causes the volume fraction of ferrite to increase and that of pearlite to decrease continuously,and even leads to the formation of bainite.Accompanied by the microstructure change,the V-treated anchor steels exhibit higher strength compared with the anchor steel without V addition.However,the increased hardness difference between ferrite and pearlite results in poor coordination of deformation between them,leading to a decrease in their plasticity.The impact toughness of anchor steel first increases but then significantly decreases with the increase in V content.The improvement in impact toughness of trace V-treated anchor steel benefits from the enhancement in the band structure after hot rolling,which consumes more energy during the vertical crack propagation process.However,when the V content further increases,the hard and brittle bainite in the anchor steel can facilitate crack initiation and propagation,ultimately resulting in a reduced toughness. 展开更多
关键词 VANADIUM anchor steel MICROSTRUCTURE PLASTICITY Impact toughness
原文传递
Ag anchored mesoporous carbon hollow sphere in Cellulose nanofibers/MXene composite films for high-performance electromagnetic interference shielding
9
作者 Wenting Tao Wenqin Shao +5 位作者 Meng Ma Si Chen Yanqin Shi Huiwen He Yulu Zhu Xu Wang 《Nano Materials Science》 2025年第1期65-73,共9页
The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials... The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials with minimum EM waves(EMW)reflection.In this paper,Ag nanoparticles loaded mesoporous carbon hollow spheres(MCHS@Ag)were synthesized by chemical reduction method,and cellulose nanofibers(CNF)/MXene/MCHS@Ag homogeneous composites were prepared.The total EM interference shielding efficiency(SET)of CNF/MXene/MCHS@Ag composite film was 32.83 dB(at 12.4 GHz),and the absorption effectiveness(SEA)was improved to 26.6 dB,which was 63.1%and 195.5%higher than that of CNF/MXene/MCHS composite film.The low dielectric property of MCHS effectively optimized the impedance matching between the composites and air.The hollow porous structure prolonged the transmission path of EMW and increased the absorption loss of the composites.At the same time,Ag nanoparticles located the MCHS were helpful to construct the internal conductive path overcoming the damage of the conductive property caused by the low dielectric of MCHS.This research adopts a straightforward method to construct a lightweight,pliable,and mesoporous composites for EMI shielding,which serves a crucial role in the current era of severe EM pollution. 展开更多
关键词 EMI shielding Porous structure Low reflection Film Ag anchored
在线阅读 下载PDF
Impacts and depositional behaviors of debris flows on natural boulder-negative Poisson's ratio anchor cable baffles
10
作者 Feifei Zhao Manchao He +1 位作者 Qiru Sui Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期946-959,共14页
The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control... The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control during debris flows is crucial but difficult.Herein,an eco-friendly control system featuring anchoring natural boulders(NBs)with(negative Poisson's ratio)NPR anchor cables is proposed to form an NB-NPR baffle.A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact.The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow,primarily in the form of changes in the depositional properties and impact intensities.The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition.The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29%to 79%compared to that of the control group in the basic experiment.The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics,including consistent resistance,large deformation,and substantial energy absorption.The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders.Overall,this research serves as a basis for future field experiments and applications. 展开更多
关键词 Debris flow Natural boulders NPR anchor cable BAFFLE Depositional behavior Impact
在线阅读 下载PDF
Heteroatoms Synergistic Anchoring Vacancies in Phosphorus-Doped CoSe_(2)Enable Ultrahigh Activity and Stability in Li-S Batteries
11
作者 Xiaoya Zhou Wei Mao +4 位作者 Chengwei Ye Qi Liang Peng Wang Xuebin Wang Shaochun Tang 《Nano-Micro Letters》 2025年第12期305-318,共14页
Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce... Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts. 展开更多
关键词 VACANCY Heteroatomic anchoring Vacancy migration Activity/stability trade-off ELECTROCATALYSTS
在线阅读 下载PDF
Bond length and interface failure mechanism of anchor cable under continuous radial pressure conditions
12
作者 Jian Ouyang Xiuzhi Shi +2 位作者 Xianyang Qiu Zongguo Zhang Zeyu Li 《International Journal of Mining Science and Technology》 2025年第2期231-247,共17页
The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study... The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines. 展开更多
关键词 Radial pressure anchor cable Bond length Numerical simulation Interface failure Microscopic process
在线阅读 下载PDF
Flexible switching devices with dynamic anchoring of Ag/Ag^(+) coupling for reservoir computing
13
作者 Xuefang Liu Jianyong Pan +5 位作者 Wentong Li Xiaoyu Zhang Zhe Li Beining Zheng Yang Li Jiaqi Zhang 《Journal of Energy Chemistry》 2025年第10期914-922,共9页
Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level rema... Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level remains a key challenge,compromising device stability and hindering practical applications.Here,we employ a chemical optimization strategy that dynamically induces the precipitation of Ag atoms under applied voltage,creating fixed atomic sites to achieve precise control over ion migration,synergistically enhancing the memory and computing capabilities of the device.Compared to unoptimized samples,the proposed device exhibits an approximately 8-fold improvement in robustness,a 3-fold enhancement in stability,high mechanical endurance,and reliable multilevel data storage capability.We further construct a device array and incorporate an efficient reservoir computing model,achieving handwritten digit recognition with an accuracy of up to 90.81%.In summary,this work proposes a dynamic Ag/Ag^(+)anchoring strategy and demonstrates a memristor-based approach that integrates storage and computation to enable energy-efficient artificial intelligence processing,offering a scalable solution for sustainable intelligence in the big data era. 展开更多
关键词 MEMRISTORS Conductive filaments Dynamic anchoring Silver-cyano coordination compounds Reservoir computing
在线阅读 下载PDF
Dynamic damage characteristics and control mechanism of rocks anchored by constant resistance and energy absorption material
14
作者 Bei Jiang Kunbo Wu +4 位作者 Qi Wang Yetai Wang Wenrui Wu Yaoxia Feng Yanbo Zhang 《International Journal of Mining Science and Technology》 2025年第1期57-67,共11页
With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in... With resource exploitation and engineering construction gradually going deeper,the surrounding rock dynamic disaster becomes frequent and violent.The anchorage support is a common control method of surrounding rock in underground engineering.To study the dynamic damage characteristics of anchored rock and the energy absorption control mechanism of dynamic disasters,a new type of constant resistance and energy absorption(CREA)material with high strength,high elongation and high energy absorption characteristics is developed.A contrast test of rockbursts in anchored rock with different support materials is conducted.The test results show that the surface damage rates and energy release degree of anchored rock with common bolt(CB)and CREA are lower than those of unanchored rock,respectively.The total energy,average energy and maximum energy released by CREA anchored rock are 30.9%,94.3%and 84.4%lower than those of CB anchored rock.Compared with unanchored rock,the rockburst peak stress in the CREA anchored rock is increased by 39.9%,and the rockburst time is delayed by 53.2%.Based on the rockburst energy calculation model,the evolution law of rockburst peak stress and energy release is investigated.The control mechanism of CREA support units on rock dynamic failure is clarified. 展开更多
关键词 Constant resistance and energy absorption anchored rock ROCKBURST Peak stress Control mechanism
在线阅读 下载PDF
A novel design magnesium alloy suture anchor promotes fibrocartilaginous enthesis regeneration in rabbit rotator cuff repair
15
作者 Wen Zhang Xianhao Sheng +5 位作者 Baoxiang Zhang Yangmu Fu Qiang Wang Ke Yang Lili Tan Qiang Zhang 《Journal of Magnesium and Alloys》 2025年第7期3209-3222,共14页
Regarding the current materials used for suture anchors for rotator cuff repair,there are still limitations in terms of degradability,mechanical properties,and bioactivities in clinical applications.Magnesium alloys h... Regarding the current materials used for suture anchors for rotator cuff repair,there are still limitations in terms of degradability,mechanical properties,and bioactivities in clinical applications.Magnesium alloys have preliminarily been shown to promote tendon-bone healing with good prospects for application as anchor materials.However,the design of anchor structures for the degradation characteristics of magnesium alloy materials has not been considered,which is critical for the practical application of magnesium alloy anchors.The mechanism by which magnesium promotes tendon bone healing remains to be clarified.Here,we proposed a novel split hollowed magnesium alloy suture anchors for the repair of rabbit rotator cuff injury.We found that novel split hollowed magnesium alloy anchors structure effectively solved the problem of failure due to degradation of traditional eyelet structure,providing reliable suture fixation.The open architecture facilitates the metabolic resorption of the degradation products of and promotes the ingrowth of bone tissue.Histological staining showed that magnesium anchors have better ability to promote regeneration at the fibrocartilage interface compared to PLLA anchors.The higher expression of fibrocartilage markers(Aggrecan,COL2A1,and Sox9)at the tendon-bone interface in magnesium anchors,which promotes chondrocyte differentiation at the tendon-bone interface and matrix formation,which is more conducive to achieving regeneration and maturation of fibrocartilage enthesis.Hence,this study provides a basis for further research on the clinical application of degradable magnesium alloy suture anchors. 展开更多
关键词 Biodegradable magnesium Suture anchor Structural design Tendon-to-bone healing
暂未订购
Shear mechanical properties and debonding failure mechanisms of bolt-resin-rock anchoring system with anisotropic interfaces
16
作者 NIE Xin-xin YIN Qian +7 位作者 TAO Zhi-gang GUO Long-ji RIABOKON Evgenii ZHU De-fu XIE Liang-fu ZHA Wen-hua WANG Lin-feng REN Ya-jun 《Journal of Central South University》 2025年第7期2535-2552,共18页
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co... This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface. 展开更多
关键词 anchoring system anisotropic interfaces shear mechanical properties strain field evolution debonding failure
在线阅读 下载PDF
Mechanical behaviors and anchoring mechanism of coal-rock-bolt combinations under high strain rate conditions
17
作者 Fuqiang Ren Tianzuo Huang +3 位作者 Chun Zhu Murat Karakus Yalong Jiang Yuan Chang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7221-7236,共16页
Understanding the mechanical properties of coal-rock-bolt(CRB)combinations at high strain rates and the anchoring mechanism of bolts is crucial for ensuring the safety of coal mining operations.However,the dynamic beh... Understanding the mechanical properties of coal-rock-bolt(CRB)combinations at high strain rates and the anchoring mechanism of bolts is crucial for ensuring the safety of coal mining operations.However,the dynamic behaviors of these combinations,especially the mechanism of action of prestressed bolts,still need to be further investigated.This study carried out split Hopkinson pressure bar(SHPB)tests on three sets of coal-rock(CR),CRB,and coal-rock-prestressed bolt(CRPB)combinations with different interface angles(β=15°,30°,45°,and 60°).The dynamic properties of the combinations were analyzed based on the stress-strain curve,energy dissipation,dynamic strength,fractal dimension of cracks,and failure mode of bolts.The test results show that a larger β will affect the stress transfer and anti-sliding ability of CR,resulting in a decrease in CR strength.The anchoring force of the bolt effectively suppresses the slip feature of CRB at the yield stage.As the strain rate increases,CRB shows a more pronounced'sudden increase'in strength,and the bolt significantly enhances its dynamic strength.The prestressed bolts enhance the dynamic strength of CRPB while weaken the effect of β.The fractal dimension of the macrocracks increases with strain rate,with smaller variations in CRB and CRPB,indicating that the bolt reduces the complexity degree of CRB and CRPB.The anchoring force of CRB depends on bolt strength,which reduces the slip along the interface.The anchoring force of CRPB balances the coal-rock slip and suppresses crack formation,resulting in a more cohesive response under dynamic load. 展开更多
关键词 Coal-rock-bolt combination Prestressed bolt High strain rates Dynamic response anchoring mechanism
在线阅读 下载PDF
Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting
18
作者 Xiangyan Chen Fujun Niu +3 位作者 Tongxiang Ma Qingyu Li Shaopeng Wang Shaohua Shen 《Smart Molecules》 2025年第2期1-12,共12页
Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction ... Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport,thus realizing highly active and stable photoelectrochemical(PEC)water splitting.In this mini review,following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting,the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting,as well as its effect on charge transfer kinetics,are comprehensively reviewed.Finally,potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized. 展开更多
关键词 anchoring groups hybrid systems molecular catalysts photoelectrochemical water splitting semiconductor photoelectrodes
在线阅读 下载PDF
Dynamic mechanical responses and debonding failure mechanisms of a bolt-resin-rock anchoring system subjected to cyclic shear loading
19
作者 Qian Yin Xinxin Nie +7 位作者 Zhigang Tao Manchao He Wenhua Zha Gang Wang Zhiqiang Yin Jiangyu Wu Linfeng Wang Yajun Ren 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2065-2078,共14页
This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the in... This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the initial normal load(Fsd),cyclic shear dis-placement amplitude(ud),frequency(f),and rock type on the shear load,normal displacement,shear wear characteristics,and strain field evolution.The experimental results showed that as Fsd increased from 7.5 to 120 kN,both the peak and residual shear loads exhibited in-creasing trends,with increments ranging from 1.98%to 35.25%and from 32.09%to 86.74%,respectively.The maximum shear load of each cycle declined over the cyclic shear cycles,with the rate of decrease slowing and stabilizing,indicating that shear wear primarily oc-curred at the initial cyclic shear stage.During cyclic shearing,the normal displacement decreased spirally with the shear displacement,im-plying continuous shear contraction.The spiral curves display sparse upwards and dense downward trends,with later cycles dominated by dynamic sliding along the pre-existing shear rupture surface,which is particularly evident in coal.The bearing capacity of the anchoring system varies with the rock type and is governed by the coal strength in coal,resin-rock bonding in sandstone#1 and sandstone#2,com-bined resin strength and resin-rock bonding in sandstone#3(sandstone#1,sandstone#2 and sandstone#3,increasing strength order),and resin strength and bolt-resin bonding in limestone.Cyclic shear loading induces anisotropic interfacial degradation,characterized by es-calating strain concentrations and predominant resin-rock interface debonding,with the damage severity modulated by the rock type. 展开更多
关键词 anchoring system anisotropic interface cyclic shear mechanical properties debonding failure strain field evolution shear wear characteristics
在线阅读 下载PDF
Design of a Wireless Measurement Instrument for Tunnel Anchor Rod Length
20
作者 Mengqiang Yu Xingcheng Wang +5 位作者 Chen Quan Mingxin Sun Yujun Yang Xiaodong He Wu Sun Pengfei Cao 《Structural Durability & Health Monitoring》 2025年第5期1127-1143,共17页
Accurate measurement of anchor rod length is crucial for ensuring structural safety in tunnel engineering,yet conventional destructive techniques face limitations in efficiency and adaptability to complex underground ... Accurate measurement of anchor rod length is crucial for ensuring structural safety in tunnel engineering,yet conventional destructive techniques face limitations in efficiency and adaptability to complex underground environments.This study presents a novel wireless instrument based on the standing wave principle to enable remote,non-destructive length assessment.The system employs a master-slave architecture,where a handheld transmitter unit initiates measurements through robust 433 MHz wireless communication,optimized for signal penetration in obstructed spaces.The embedded measurement unit,integrated with anchor rods during installation,utilizes frequency-scanning technology to excite structural resonances.By analyzing standing wave characteristics,anchor length is derived from a calibrated frequency-length relationship.Power management adopts a standby-activation strategy to minimize energy consumption while maintaining operational readiness.Experimental validation confirms the system effectively measures anchor lengths with high precision and maintains reliable signal transmission through thick concrete barriers,demonstrating suitability for tunnel deployment.The non-destructive approach eliminates structural damage risks associated with traditional pull-out tests,while wireless operation enhances inspection efficiency in confined spaces.Thiswork establishes a paradigmfor embedded structural healthmonitoring in tunneling,offering significant improvements over existing methods in safety,cost-effectiveness,and scalability.The technology holds promise for broad applications in mining,underground infrastructure,and geotechnical engineering. 展开更多
关键词 Tunnel construction anchor rod lengths standing wave method 433 MHz communication non-destructive testing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部