In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in...In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.展开更多
On a complete non-compact gradient shrinking Ricci soliton,we prove the analyticity in time for smooth solutions of the heat equation with quadratic exponential growth in the space variable.This growth condition is sh...On a complete non-compact gradient shrinking Ricci soliton,we prove the analyticity in time for smooth solutions of the heat equation with quadratic exponential growth in the space variable.This growth condition is sharp.As an application,we give a necessary and sufficient condition on the solvability of the backward heat equation in a class of functions with quadratic exponential growth on shrinkers.展开更多
In this paper we prove the analyticity of the semigroups generated by some singular differential matrix operators of the form in the Banach space with suitable boundary conditions. To illustrate the work an example is...In this paper we prove the analyticity of the semigroups generated by some singular differential matrix operators of the form in the Banach space with suitable boundary conditions. To illustrate the work an example is discussed.展开更多
In this paper we are interested in studying the dissipativity of degenerate mixed differential operators involving an interface point. We show that, under particular interface conditions, such operators generate analy...In this paper we are interested in studying the dissipativity of degenerate mixed differential operators involving an interface point. We show that, under particular interface conditions, such operators generate analytic semigroups on an appropriate Hilbert space . To illustrate the results an example is discussed.展开更多
In this note,we study the Cauchy problem of the linear spatially homogeneous Landau equation with soft potentials.We prove that the solution to the Cauchy problem enjoys the analytic regularizing effect of the time va...In this note,we study the Cauchy problem of the linear spatially homogeneous Landau equation with soft potentials.We prove that the solution to the Cauchy problem enjoys the analytic regularizing effect of the time variable with an L2 initial datum for positive time.So that the smoothing effect of Cauchy problem for the linear spatially homogeneous Landau equation with soft potentials is similar to the heat equation.展开更多
In this paper,we study the problem of analyticity of smooth solutions of the inviscid Boussinesq equations.If the initial datum is real-analytic,the solution remains real-analytic on the existence interval.By an induc...In this paper,we study the problem of analyticity of smooth solutions of the inviscid Boussinesq equations.If the initial datum is real-analytic,the solution remains real-analytic on the existence interval.By an inductive method we can obtain a lower bound on the radius of spatial analyticity of the smooth solution.展开更多
We consider a thermoelastic plate with dynamical boundary conditions. Using the contradictionargument of Pazy's well-known analyticity criterion and P.D.E. estimates, we prove that the corresponding C0semigroup is...We consider a thermoelastic plate with dynamical boundary conditions. Using the contradictionargument of Pazy's well-known analyticity criterion and P.D.E. estimates, we prove that the corresponding C0semigroup is analytic, hence exponentially stable.展开更多
In the present paper,the analyticity of solutions to a class of degenerate elliptic equations is obtained.A kind of weighted norms are introduced and under such norms some degenerate elliptic operators are of weak coe...In the present paper,the analyticity of solutions to a class of degenerate elliptic equations is obtained.A kind of weighted norms are introduced and under such norms some degenerate elliptic operators are of weak coerciveness.展开更多
为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order pr...为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)相结合的评价方法。通过地质调查研究构建基于土体工程地质性质、水文地质条件、不良地质作用、地形地貌等影响因素为主的层次分析关系模型。基于专家判别利用FAHP计算各评价因素的权重,以各评价指标层的分级临界值作为典型评价样本,利用TOPSIS法对适宜性等级进行非等分划分,基于区间值优化的TOPSIS法建立最终评价模型,通过ArcGIS的空间分析功能等确定每个评价单元适宜性等级。该方法与传统方法相比一定程度上减少了评价过程中专家评判的过多主观影响,评价过程更倾向于定量化,结果更为客观。利用该方法对无锡市区浅层地下空间开发地质适宜性进行评价,评价结果与实际工程经验相符,证明了该方法的有效性,因此该方法对地下空间开发适宜性评价工作具有一定借鉴意义。展开更多
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca...A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.展开更多
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract...Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ...This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the s...Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices.展开更多
Earthquakes pose significant perils to the built environment in urban areas.To avert the calamitous aftermath of earthquakes,it is imperative to construct seismic resilient cities.Due to the intricacy of the concept o...Earthquakes pose significant perils to the built environment in urban areas.To avert the calamitous aftermath of earthquakes,it is imperative to construct seismic resilient cities.Due to the intricacy of the concept of urban seismic resilience(USR),its assessment is a large-scale system engineering issue.The assessment of USR should be based on the notion of urban seismic capacity(USC)assessment,which includes casualties,economic loss,and recovery time as criteria.Functionality loss is also included in the assessment of USR in addition to these criteria.The assessment indicator system comprising five dimensions(building and lifeline infrastructure,environment,society,economy,and institution)and 20 indicators has been devised to quantify USR.The analytical hierarchy process(AHP)is utilized to compute the weights of the criteria,dimensions,and indicators in the urban seismic resilience assessment(USRA)indicator system.When the necessary data for a city are obtainable,the seismic resilience of that city can be assessed using this framework.To illustrate the proposed methodology,a moderate-sized city in China was selected as a case study.The assessment results indicate a high level of USR,suggesting that the city possesses strong capabilities to withstand and recover from potential future earthquakes.展开更多
A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance m...A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method.Firstly,an altitude-energy profile is designed,and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method.The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error,which greatly accelerates the iterative speed.Then,a segmented guidance algorithm is proposed.The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold.When the energy is less than the threshold,the equidistant test method is used to calculate the bank angle command,which ensures guidance accuracy as well as computational efficiency.Additionally,an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory.Finally,the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments.Compared with the traditional integral method,the proposed method requires 75%less computation time on average and achieves a lower landing error.展开更多
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma...Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
基金supported by the Opening Project of Guangdong Province Key Laboratory of Cyber-Physical System(20168030301008)supported by the National Natural Science Foundation of China(11126266)+4 种基金the Natural Science Foundation of Guangdong Province(2016A030313390)the Quality Engineering Project of Guangdong Province(SCAU-2021-69)the SCAU Fund for High-level University Buildingsupported by the National Key Research and Development Program of China(2020YFA0712500)the National Natural Science Foundation of China(11971496,12126609)。
文摘In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.
基金partially supported by the National Natural Science Foundation of China(11671141)the Natural Science Foundation of Shanghai(17ZR1412800)。
文摘On a complete non-compact gradient shrinking Ricci soliton,we prove the analyticity in time for smooth solutions of the heat equation with quadratic exponential growth in the space variable.This growth condition is sharp.As an application,we give a necessary and sufficient condition on the solvability of the backward heat equation in a class of functions with quadratic exponential growth on shrinkers.
文摘In this paper we prove the analyticity of the semigroups generated by some singular differential matrix operators of the form in the Banach space with suitable boundary conditions. To illustrate the work an example is discussed.
文摘In this paper we are interested in studying the dissipativity of degenerate mixed differential operators involving an interface point. We show that, under particular interface conditions, such operators generate analytic semigroups on an appropriate Hilbert space . To illustrate the results an example is discussed.
基金supported by the NSFC(No.12031006)the Fundamental Research Funds for the Central Universities of China.
文摘In this note,we study the Cauchy problem of the linear spatially homogeneous Landau equation with soft potentials.We prove that the solution to the Cauchy problem enjoys the analytic regularizing effect of the time variable with an L2 initial datum for positive time.So that the smoothing effect of Cauchy problem for the linear spatially homogeneous Landau equation with soft potentials is similar to the heat equation.
基金supported partially by"The Fundamental Research Funds for Central Universities of China".
文摘In this paper,we study the problem of analyticity of smooth solutions of the inviscid Boussinesq equations.If the initial datum is real-analytic,the solution remains real-analytic on the existence interval.By an inductive method we can obtain a lower bound on the radius of spatial analyticity of the smooth solution.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10071079).
文摘We consider a thermoelastic plate with dynamical boundary conditions. Using the contradictionargument of Pazy's well-known analyticity criterion and P.D.E. estimates, we prove that the corresponding C0semigroup is analytic, hence exponentially stable.
文摘In the present paper,the analyticity of solutions to a class of degenerate elliptic equations is obtained.A kind of weighted norms are introduced and under such norms some degenerate elliptic operators are of weak coerciveness.
文摘为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)相结合的评价方法。通过地质调查研究构建基于土体工程地质性质、水文地质条件、不良地质作用、地形地貌等影响因素为主的层次分析关系模型。基于专家判别利用FAHP计算各评价因素的权重,以各评价指标层的分级临界值作为典型评价样本,利用TOPSIS法对适宜性等级进行非等分划分,基于区间值优化的TOPSIS法建立最终评价模型,通过ArcGIS的空间分析功能等确定每个评价单元适宜性等级。该方法与传统方法相比一定程度上减少了评价过程中专家评判的过多主观影响,评价过程更倾向于定量化,结果更为客观。利用该方法对无锡市区浅层地下空间开发地质适宜性进行评价,评价结果与实际工程经验相符,证明了该方法的有效性,因此该方法对地下空间开发适宜性评价工作具有一定借鉴意义。
基金supported in part by financial support from the National Key R&D Program of China(No.2023YFB3407003)the National Natural Science Foundation of China(No.52375378).
文摘A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.
基金Project(52278421)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0754)supported by the Fundamental Research Funds for the Central Universities of Central South University,China+2 种基金Project(2023CXQD067)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(2022QNRC001)supported by Young Elite Scientists Sponsorship Program by CASTProject(2023TJ-N24)supported by the Youth Talent Program by China Railway Society and the Hunan Provincial Science and Technology Promotion Talent Project。
文摘Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
基金sponsored by the U.S.Department of Housing and Urban Development(Grant No.NJLTS0027-22)The opinions expressed in this study are the authors alone,and do not represent the U.S.Depart-ment of HUD’s opinions.
文摘This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金This work was supported by the Le Quy Don Technical University Research Fund(Grant No.23.1.11).
文摘Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices.
基金supported by the National Key R&D Program of China(No.2023YFC3805100)the National Natural Science Foundation of China(Nos.52222811 and 52494963)。
文摘Earthquakes pose significant perils to the built environment in urban areas.To avert the calamitous aftermath of earthquakes,it is imperative to construct seismic resilient cities.Due to the intricacy of the concept of urban seismic resilience(USR),its assessment is a large-scale system engineering issue.The assessment of USR should be based on the notion of urban seismic capacity(USC)assessment,which includes casualties,economic loss,and recovery time as criteria.Functionality loss is also included in the assessment of USR in addition to these criteria.The assessment indicator system comprising five dimensions(building and lifeline infrastructure,environment,society,economy,and institution)and 20 indicators has been devised to quantify USR.The analytical hierarchy process(AHP)is utilized to compute the weights of the criteria,dimensions,and indicators in the urban seismic resilience assessment(USRA)indicator system.When the necessary data for a city are obtainable,the seismic resilience of that city can be assessed using this framework.To illustrate the proposed methodology,a moderate-sized city in China was selected as a case study.The assessment results indicate a high level of USR,suggesting that the city possesses strong capabilities to withstand and recover from potential future earthquakes.
基金National Natural Science Foundation of China(Nos.61773387 and 62022061).
文摘A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method.Firstly,an altitude-energy profile is designed,and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method.The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error,which greatly accelerates the iterative speed.Then,a segmented guidance algorithm is proposed.The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold.When the energy is less than the threshold,the equidistant test method is used to calculate the bank angle command,which ensures guidance accuracy as well as computational efficiency.Additionally,an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory.Finally,the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments.Compared with the traditional integral method,the proposed method requires 75%less computation time on average and achieves a lower landing error.
文摘Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.