In this paper, the AMSAA-BISE model with missing data is discussed. The ML estimates of model parameters and current MTBF are given, and the chi-squared test and a plot for cumulative number of failures versus cumulat...In this paper, the AMSAA-BISE model with missing data is discussed. The ML estimates of model parameters and current MTBF are given, and the chi-squared test and a plot for cumulative number of failures versus cumulative testing time are used to test the goodness of fit for the model. This paper concludes with a numerical example to verify the model.展开更多
An advanced reliability growth model, i. e. exponential model, was presented to estimate the model parameters for multi-systems, which was synchronously tested, synchronously censored, and synchronously improved. In t...An advanced reliability growth model, i. e. exponential model, was presented to estimate the model parameters for multi-systems, which was synchronously tested, synchronously censored, and synchronously improved. In the presented method, the data during the reliability growth process were taken into consideration sufficiently, including the failure numbers, safety numbers and failure time at each censored time. If the multi-systems were synchronously improved for many times, and the reliability growth of each system fitted AMSAA (Army Material Systems Analysis Activity) model, the failure time of each system could be considered rationally as an exponential distribution between two adjoining censored times. The nonparametric method was employed to obtain the reliability at each censored time of the synchronous multisystems. The point estimations of the model parameters, a and b, were given by the least square method. The confidence interval for the parameter b was given as well. An engineering illustration was used to compare the result of the presented method with those of the available models. The result shows that the presented exponential growth model fits AMSAA-BISE ( Army Material Systems Analysis Activity-Beijing Institute of Structure and Environment) model rather well, and two models are suitable to estimate the reliability growth for the synchronously developed multi-systems.展开更多
文摘In this paper, the AMSAA-BISE model with missing data is discussed. The ML estimates of model parameters and current MTBF are given, and the chi-squared test and a plot for cumulative number of failures versus cumulative testing time are used to test the goodness of fit for the model. This paper concludes with a numerical example to verify the model.
文摘An advanced reliability growth model, i. e. exponential model, was presented to estimate the model parameters for multi-systems, which was synchronously tested, synchronously censored, and synchronously improved. In the presented method, the data during the reliability growth process were taken into consideration sufficiently, including the failure numbers, safety numbers and failure time at each censored time. If the multi-systems were synchronously improved for many times, and the reliability growth of each system fitted AMSAA (Army Material Systems Analysis Activity) model, the failure time of each system could be considered rationally as an exponential distribution between two adjoining censored times. The nonparametric method was employed to obtain the reliability at each censored time of the synchronous multisystems. The point estimations of the model parameters, a and b, were given by the least square method. The confidence interval for the parameter b was given as well. An engineering illustration was used to compare the result of the presented method with those of the available models. The result shows that the presented exponential growth model fits AMSAA-BISE ( Army Material Systems Analysis Activity-Beijing Institute of Structure and Environment) model rather well, and two models are suitable to estimate the reliability growth for the synchronously developed multi-systems.