Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,whic...Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.展开更多
Biocompatible amphiphilic nanoparticles(NPs)with tunable particle morphology and surface property are important for their applications as functional materials.However,previously developed methods to prepare amphiphili...Biocompatible amphiphilic nanoparticles(NPs)with tunable particle morphology and surface property are important for their applications as functional materials.However,previously developed methods to prepare amphiphilic NPs generally involve several steps,especially an additional step for surface modification,greatly hindering their largescale production and widespread applications.Here,a versatile one-step strategy is developed to prepare biocompatible amphiphilic dimer NPs with tunable particle morphology and surface property.The amphiphilic dimer NPs,which consist of a hydrophobic shellac bulb and a hydrophilic poly(lactic acid)(PLA)bulb with PLA-poly(ethylene glycol)(PEG)on the bulb surface,are prepared in a single step by controlled co-precipitation and self-assembly.Amphiphilic PLA-PEG/shellac dimer NPs demonstrate excellent tunability in particle morphology,thus showing good performances in controlling the interfacial curvature and emulsion type.In addition,temperatureresponsive PLA-poly(N-isopropyl acrylamide)(PNIPAM)/shellac dimer NPs are prepared following the same method and emulsions stabilized by them show temperature-triggered response.The applications of PLA-PEG-folic acid(FA)/shellac dimer NPs for drug delivery have also been demonstrated,which show a very good performance.The strategy of preparing the dimer NPs is green,scalable,facile and versatile,which provides a good platform for the design of dimer NPs with tunable particle morphology and surface property for diverse applications.展开更多
Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature ...Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.展开更多
The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxi...The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxidative desulfurization(ODS)process.In this work,we introduce a novel dualfunction amphiphilic biochar(Mo/CBC)catalyst,functionalized with MoO_(3-x)featuring abundant oxygen vacancies,for highly effective extractant-free ODS.The polarity of the biochar was precisely tailored by varying the amount of KOH,leading to the creation of amphiphilic carriers.Subsequent ball milling facilitated the successful loading of MoO_(3-x)onto the biochar surface via an impregnation-calcination route leveraging carbon reduction,resulting in the synthesis of amphiphilic Mo/CBC catalysts.The amphiphilic nature of these catalysts ensures their stable dispersion within the oil phase,while also facilitating their interaction with the oxidant H2O2 and the adsorption of sulfur-containing oxidation products.Characterization techniques,including EPR,XPS,and in situ XRD,verified the existence of abundant oxygen vacancies obtained by carbon reduction on the amphiphilic Mo/CBC catalysts,which significantly boosted their activity in an extractant-free ODs system.Remarkably,the amphiphilic Mo/CBC catalyst displayed exceptional catalytic performance,achieving a desulfurization efficiency of 99.6%in just 10 min without extraction solvent.DFT theoretical calculations further revealed that H_(2)O_(2)readily dissociates into two OH radicals on the O_(vac)-MoO_(3),overcoming a low energy barrier.This process was identified as a key contributor to the catalyst's outstanding ODS performance.Furthermore,other biochar sources,such as rice straw,bamboo,rapeseed oil cake,and walnut oil cake,were investigated to produce Mo-based amphiphilic biochar catalysts,which all showed excellent desulfurization performance.This work establishes a versatile and highly efficient dual-function catalytic-sorption system by designing amphiphilic biochar catalysts enriched with oxygen vacancies,paving the way for the development of universally applicable ODS catalysts for industrial applications.展开更多
This study prepared and characterized amphiphilic carboxymethyl cellulose stearate(CMCS)recycled from sugarcane bagasse agro-waste(SB).The Fourier-transform infrared(FTIR)analysis confirmed cellulose,carboxymethyl cel...This study prepared and characterized amphiphilic carboxymethyl cellulose stearate(CMCS)recycled from sugarcane bagasse agro-waste(SB).The Fourier-transform infrared(FTIR)analysis confirmed cellulose,carboxymethyl cellulose(CMC),and CMCS structures,with CMCS showing increased H-bonding.X-ray diffraction analysis(XRD)revealed reduced crystallinity in CMC and CMCS.CMCS exhibited a hydrophobic nature but dispersed in water,enabling nanoemulsion formation.Optimal nanoemulsion was achieved with CMCS1,showing a particle size of 99 nm.Transmission electron microscopy(TEM)images revealed CMC’s honeycomb structure,transforming into spherical particles in CMCS1.Antimicrobial tests demonstrated strong activity of CMCS formulations against Escherichia coli and Staphylococcus aureus,with CMCS3 exhibiting the highest efficacy.These findings highlight the potential of CMCS-based nanoemulsions for antimicrobial applications and nanoemulsification.展开更多
The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution.Herein,an assembled amphiphilic peptide alignment medium,i.e.,C...The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution.Herein,an assembled amphiphilic peptide alignment medium,i.e.,C15eCONH-Phg-Phg-IIIKK-CONH2 with un-natural amino acids for the determination of anisotropic parameters of NMR is introduced.The amphiphilic peptide can be self-assembled at low concentrations in DMSO and is stable and highly homogeneous.The NMR spectrum collected with the addition of the medium had fewer background signals.The utility of the acquired RDC data is demon-strated to determine relative configuration of three natural products,Helminthosporic acid,Estrone,and a-Santonin.展开更多
The hydration state of amphiphilic block copolymers during the self-assembly transition is closely related to the structure and properties of copolymers. In this study, the temperature-induced self-assembly of copolym...The hydration state of amphiphilic block copolymers during the self-assembly transition is closely related to the structure and properties of copolymers. In this study, the temperature-induced self-assembly of copolymer poly(N,N-dimethylacrylamide)-poly(diacetone acrylamide)(PDMAA_(30)-PDAAM_(60))_(2)in aqueous solution was monitored by near-infrared spectroscopy with water as a probe. The wavelet packet transform was employed to improve the spectral resolution. The spectral information of hydrated water surrounding the hydrophilic PDMAA and hydrophobic PDAAM blocks was then extracted, revealing the significant roles of water in morphological transition of the copolymer from spherical to worm-like micelles. Specifically, water molecules interacting with N atoms and C=O groups of the hydrophilic block gradually decrease during the morphological transition, while hydrogen-bond structures NH–CO of the hydrophobic block gradually break, bringing more water molecules into contact with the hydrophobic block. This work provides a foundation for exploring the role of water molecules during the self-assembly transition of complex block copolymers.展开更多
It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence an...It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials.展开更多
Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement w...Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement were performed to prove the successful immobilization.The amphiphilic [2]rotaxane functionalized surface presented controllable wettability responding to external acid-base stimuli.This bistable rotaxane modified material system promoted the practical application of molecular machines.展开更多
Inadequate strength and stability of active crude oil emulsions stabilized by conventional surfactants always lead to a limited plugging rate of plugging agents.Thus,to address this issue,the synthesis of amphiphilic ...Inadequate strength and stability of active crude oil emulsions stabilized by conventional surfactants always lead to a limited plugging rate of plugging agents.Thus,to address this issue,the synthesis of amphiphilic Janus nanosheets was effectively carried out for enhancing the system performances and subsequently characterized.Based on the outcomes of orthogonal tests,an assessment was conducted on the nanosheet and surfactant formulations to optimize the enhancement of emulsion properties.The experimental demonstration of the complex system has revealed its remarkable emulsifying capability,ability to decrease interfacial tension and improve rheological behavior at high temperature(80℃)and high salinity(35,000 ppm)conditions.Involving probable mechanism of the system performance enhancement is elucidated by considering the synergistic effect between surfactants and nanosheets.Furthermore,variables including water-to-oil ratio,salinity,temperature and stirring intensity during operation,which affect the properties of prepared emulsions,were investigated in detail.The efficacy and stability of the complex system in obstructing medium and high permeability cores were demonstrated.Notably,the core with a high permeability of 913.58 mD exhibited a plugging rate of 98.55%.This study establishes the foundations of medium and high permeability reservoirs plugging with novel active crude oil plugging agents in severe environments.展开更多
An amphiphilic derivative with a large Stokes shift by introducing flexible hydrophilic long chains into a rigid ethylene-pyrene compound have been successfully synthesized.The alkylated compound exhibited a notable c...An amphiphilic derivative with a large Stokes shift by introducing flexible hydrophilic long chains into a rigid ethylene-pyrene compound have been successfully synthesized.The alkylated compound exhibited a notable change in charge distribution,facilitating cation-π interactions.Through the process of amphiphilic self-assembly,the formation of highly ordered aggregates enabled effective photo-dimerization under 449 nm LED irradiation.Notably,this photo-responsive technology not only exhibited advanced multi-color emission effects,including white light emission but also exhibited environmentally friendly behavior in the aqueous phase.展开更多
Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine ...Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.展开更多
Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely...Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely distributed solar energy and alleviate the world's freshwater scarcity.Herein,an amphiphilic photothermal membrane is prepared through the self-assembly of hydrophilic heteropoly blue(HPB,H_(3)PMo_(12)O_(40))and hydrophobic surfactant(dioctadecyl dimethyl ammonium bromide,DODA).Benefiting from the synergistic effects of alternating functional hydrophilic HPB and hydrophobic DODA layers,the flexible membrane based on two-dimensional DODA-HPB self-assemblies(DODA-HPB/Nylon66)exhibits superior photothermal conversion properties,showing promising prospects in applications of solar desalination and wastewater treatment.展开更多
[Objective] The research was aimed to study the adsorption behavior of p-nitroaniline from aqueous solution by porous hollow carbonaceous spheres (PHCSs).[Method] The effects of pH,temperature and amount of carbonac...[Objective] The research was aimed to study the adsorption behavior of p-nitroaniline from aqueous solution by porous hollow carbonaceous spheres (PHCSs).[Method] The effects of pH,temperature and amount of carbonaceous microspheres on adsorption behavior of p-nitroaniline were investigated.[Result] The adsorption amount was affected by temperature slightly,and it decreased with the increase of temperature within a certain range.PHCSs had a higher adsorption capacity as pH was in the range of 2.0-8.0.The adsorption amount of p-nitroaniline was proportional to PHCSs amount within a certain range until it reached a saturation level.The adsorption isotherms of p-nitroaniline appeared to be nonlinear and obeyed to Freundlich equation very well.[Conclusion] The amphiphilic property and the specific chemical functional groups of PHCSs enable them to be a potentially excellent sorbent.展开更多
Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl ...Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were charac-terized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation e ciency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.展开更多
Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles(NPs) by a dou...Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles(NPs) by a double emulsion-solvent evaporation(DESE) method. The particle size and drug encapsulation efficacy(EE) were compared to evaluate and optimize the preparation parameters. The mixed NPs had average size ranging from(102±1) nm to(137±5) nm, and the zeta potential turned to positive with incorporation of the amphiphilic dendrimer. The NPs showed different EE of docetaxel(DTX) and paclitaxel(PTX) with higher affinity to more lipophilic PTX. The blank mixed NPs showed little cytotoxicity, and the DTX-loaded NPs could effectively facilitate the antiproliferation activity on PC-3 cells. The NPs could be used as an effective drug delivery system, and its anti-tumor effect is worthy of further study.展开更多
Three well-defined diblock copolymers ofpoly(methyl methacrylate-b-methacrylic acid) (P(MMA-b-MAA)) were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid) (PMAA...Three well-defined diblock copolymers ofpoly(methyl methacrylate-b-methacrylic acid) (P(MMA-b-MAA)) were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid) (PMAA) chain lengths. These copolymers were blended with PVC to fabricate porous membranes via phase inversion process. Membrane morphologies were observed by scanning electron microscopy (SEM), and chemical composition changes of the membrane surfaces were measured by X-ray photoelectron spectroscopy (XPS). Static and dynamic protein adsorption experiments were used to evaluate antifouling properties of the blend membranes. It was found that, the blend membranes containing longer PMAA arm length showed lower static protein adsorption, higher water permeation flux and better protein solution flux recovery.展开更多
To overcome the fast or burst release of hydrophilic drugs from hydrophilic alginate-based carriers,hydrophobic molecule(vinyl acetate,VAc)was grafted on alginate(Alg),which was further used to prepare drug carriers.A...To overcome the fast or burst release of hydrophilic drugs from hydrophilic alginate-based carriers,hydrophobic molecule(vinyl acetate,VAc)was grafted on alginate(Alg),which was further used to prepare drug carriers.Amphiphilic Alg-g-PVAc hydrogel beads were firstly prepared by emulsification/internal gelation technique for the loading of bovine serum albumin(BSA).Then,chitosan was coated on the surface of beads to form novel amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS)microcapsules.The BSA-loading amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS)microcapsules display similar morphology and size to the hydrophilic alginate/chitosan(AC)microcapsules.However,the drug loading and loading efficiency of BSA in Alg-g-PVAc/CS microcapsules are higher,and the release rate of BSA from Alg-g-PVAc/CS microcapsules is slower.The results demonstrate that the introduction of hydrophobic PVAc on alginate can effectively help retard the release of BSA,and the higher degree of substitution is,the slower the release rate is.In addition,the complex membrane can also be adjusted to delay the release of BSA.As a whole,amphiphilic sodium alginate-vinyl acetate/CS microparticles could be developed for macromolecular drug delivery.展开更多
Recently, much special attention has been focused on the development of amphiphilic copolymers.Herein, a reduction-sensitive stearic acid grafted-Bletilla striata polysaccharide copolymer(BSP-ss-SA)was synthesized a...Recently, much special attention has been focused on the development of amphiphilic copolymers.Herein, a reduction-sensitive stearic acid grafted-Bletilla striata polysaccharide copolymer(BSP-ss-SA)was synthesized and characterized. BSP-ss-SA copolymer could spontaneously form micelles with an average particle size of(106 ? 4.36) nm. Particle sizes were dramatically larger under 10 mmol/L dithiothreitol(DTT) than that in absence of 10 mmol/L DTT. Docetaxel loading content and encapsulation efficiency of micelles were 5.94 wt% and 72.75 wt%, respectively. The docetaxel release rate in vitro in micelles could be remarkably accelerated in pH 7.4 phosphate buffer solution(PBS) containing 10 mmol/L DTT compared with that of micelles(0 mmol/L DTT). Furthermore, MTT results demonstrated the anticancer activities in vitro of docetaxel-loaded BSP-ss-SA micelles on HepG2 were superior to that of docetaxel injection. BSP-ss-SA copolymer might be a promising nanocarrier for cancer chemotherapy drugs.展开更多
Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (e...Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.展开更多
文摘Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.
基金supported by National Natural Science Foundation of China(No.22278352)National Key Research and Development Program of China(No.2021YFC3001100)+3 种基金Longyan City Science and Technology Plan Project(No.2020LYF17043)Longyan City Science and Technology Plan Project(No.2020LYF17042)ARC Discovery Project(No.DP200101238)and NHMRC Investigator Grant(No.APP2008698)supported by the Harvard Materials Research Science and Engineering Center(No.DMR2011754)。
文摘Biocompatible amphiphilic nanoparticles(NPs)with tunable particle morphology and surface property are important for their applications as functional materials.However,previously developed methods to prepare amphiphilic NPs generally involve several steps,especially an additional step for surface modification,greatly hindering their largescale production and widespread applications.Here,a versatile one-step strategy is developed to prepare biocompatible amphiphilic dimer NPs with tunable particle morphology and surface property.The amphiphilic dimer NPs,which consist of a hydrophobic shellac bulb and a hydrophilic poly(lactic acid)(PLA)bulb with PLA-poly(ethylene glycol)(PEG)on the bulb surface,are prepared in a single step by controlled co-precipitation and self-assembly.Amphiphilic PLA-PEG/shellac dimer NPs demonstrate excellent tunability in particle morphology,thus showing good performances in controlling the interfacial curvature and emulsion type.In addition,temperatureresponsive PLA-poly(N-isopropyl acrylamide)(PNIPAM)/shellac dimer NPs are prepared following the same method and emulsions stabilized by them show temperature-triggered response.The applications of PLA-PEG-folic acid(FA)/shellac dimer NPs for drug delivery have also been demonstrated,which show a very good performance.The strategy of preparing the dimer NPs is green,scalable,facile and versatile,which provides a good platform for the design of dimer NPs with tunable particle morphology and surface property for diverse applications.
基金supported by Science,Technology&Innovation Funding Authority(STDF)under grant(No.47062).
文摘Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.
基金supported by the National Natural Science Foundation of China(22162008)the Science and Technology Supporting Project of Guizhou Province([2022]208)+1 种基金the Guizhou Province Local Government Overseas Study Programthe open project of Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute.
文摘The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxidative desulfurization(ODS)process.In this work,we introduce a novel dualfunction amphiphilic biochar(Mo/CBC)catalyst,functionalized with MoO_(3-x)featuring abundant oxygen vacancies,for highly effective extractant-free ODS.The polarity of the biochar was precisely tailored by varying the amount of KOH,leading to the creation of amphiphilic carriers.Subsequent ball milling facilitated the successful loading of MoO_(3-x)onto the biochar surface via an impregnation-calcination route leveraging carbon reduction,resulting in the synthesis of amphiphilic Mo/CBC catalysts.The amphiphilic nature of these catalysts ensures their stable dispersion within the oil phase,while also facilitating their interaction with the oxidant H2O2 and the adsorption of sulfur-containing oxidation products.Characterization techniques,including EPR,XPS,and in situ XRD,verified the existence of abundant oxygen vacancies obtained by carbon reduction on the amphiphilic Mo/CBC catalysts,which significantly boosted their activity in an extractant-free ODs system.Remarkably,the amphiphilic Mo/CBC catalyst displayed exceptional catalytic performance,achieving a desulfurization efficiency of 99.6%in just 10 min without extraction solvent.DFT theoretical calculations further revealed that H_(2)O_(2)readily dissociates into two OH radicals on the O_(vac)-MoO_(3),overcoming a low energy barrier.This process was identified as a key contributor to the catalyst's outstanding ODS performance.Furthermore,other biochar sources,such as rice straw,bamboo,rapeseed oil cake,and walnut oil cake,were investigated to produce Mo-based amphiphilic biochar catalysts,which all showed excellent desulfurization performance.This work establishes a versatile and highly efficient dual-function catalytic-sorption system by designing amphiphilic biochar catalysts enriched with oxygen vacancies,paving the way for the development of universally applicable ODS catalysts for industrial applications.
文摘This study prepared and characterized amphiphilic carboxymethyl cellulose stearate(CMCS)recycled from sugarcane bagasse agro-waste(SB).The Fourier-transform infrared(FTIR)analysis confirmed cellulose,carboxymethyl cellulose(CMC),and CMCS structures,with CMCS showing increased H-bonding.X-ray diffraction analysis(XRD)revealed reduced crystallinity in CMC and CMCS.CMCS exhibited a hydrophobic nature but dispersed in water,enabling nanoemulsion formation.Optimal nanoemulsion was achieved with CMCS1,showing a particle size of 99 nm.Transmission electron microscopy(TEM)images revealed CMC’s honeycomb structure,transforming into spherical particles in CMCS1.Antimicrobial tests demonstrated strong activity of CMCS formulations against Escherichia coli and Staphylococcus aureus,with CMCS3 exhibiting the highest efficacy.These findings highlight the potential of CMCS-based nanoemulsions for antimicrobial applications and nanoemulsification.
基金supported by the National Natural Science Foundation of China(21874158)the Science and Technology Major Program of Gansu Province of China(22ZD6FA006 and 23ZDFA015)+1 种基金We are also grateful for the financial support from the Science and Technology Program of Henan Province(232102311180)the foundation for the University Young Key Teacher of Henan Province(2024GGJS116).
文摘The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution.Herein,an assembled amphiphilic peptide alignment medium,i.e.,C15eCONH-Phg-Phg-IIIKK-CONH2 with un-natural amino acids for the determination of anisotropic parameters of NMR is introduced.The amphiphilic peptide can be self-assembled at low concentrations in DMSO and is stable and highly homogeneous.The NMR spectrum collected with the addition of the medium had fewer background signals.The utility of the acquired RDC data is demon-strated to determine relative configuration of three natural products,Helminthosporic acid,Estrone,and a-Santonin.
基金supported by the National Natural Science Foundation of China (Nos. 22174075 and 22374082)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘The hydration state of amphiphilic block copolymers during the self-assembly transition is closely related to the structure and properties of copolymers. In this study, the temperature-induced self-assembly of copolymer poly(N,N-dimethylacrylamide)-poly(diacetone acrylamide)(PDMAA_(30)-PDAAM_(60))_(2)in aqueous solution was monitored by near-infrared spectroscopy with water as a probe. The wavelet packet transform was employed to improve the spectral resolution. The spectral information of hydrated water surrounding the hydrophilic PDMAA and hydrophobic PDAAM blocks was then extracted, revealing the significant roles of water in morphological transition of the copolymer from spherical to worm-like micelles. Specifically, water molecules interacting with N atoms and C=O groups of the hydrophilic block gradually decrease during the morphological transition, while hydrogen-bond structures NH–CO of the hydrophobic block gradually break, bringing more water molecules into contact with the hydrophobic block. This work provides a foundation for exploring the role of water molecules during the self-assembly transition of complex block copolymers.
基金financially supported by the Natural Science Foundation of Jilin Province Science and Technology Department(No.20230101221JC)the National Natural Science Foundation of China(Nos.52173115,52073278,52203189)the Research Foundation for Advanced Talents of Xiamen University of Technology(Nos.5010423019,YKJ22052R)。
文摘It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials.
基金supported by the National Natural Science Foundation of China(Nos.21901063,U20041101)Young Talents Personnel Fund of Henan Agricultural University(No.30500604)Key Science and Technology Foundation of Henan Province(Nos.242102230178,232102310379)。
文摘Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement were performed to prove the successful immobilization.The amphiphilic [2]rotaxane functionalized surface presented controllable wettability responding to external acid-base stimuli.This bistable rotaxane modified material system promoted the practical application of molecular machines.
基金financially supported by National Natural Science Foundation of China(52374053)Beijing Natural Science Foundation(2204092)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(2018000020124G163)。
文摘Inadequate strength and stability of active crude oil emulsions stabilized by conventional surfactants always lead to a limited plugging rate of plugging agents.Thus,to address this issue,the synthesis of amphiphilic Janus nanosheets was effectively carried out for enhancing the system performances and subsequently characterized.Based on the outcomes of orthogonal tests,an assessment was conducted on the nanosheet and surfactant formulations to optimize the enhancement of emulsion properties.The experimental demonstration of the complex system has revealed its remarkable emulsifying capability,ability to decrease interfacial tension and improve rheological behavior at high temperature(80℃)and high salinity(35,000 ppm)conditions.Involving probable mechanism of the system performance enhancement is elucidated by considering the synergistic effect between surfactants and nanosheets.Furthermore,variables including water-to-oil ratio,salinity,temperature and stirring intensity during operation,which affect the properties of prepared emulsions,were investigated in detail.The efficacy and stability of the complex system in obstructing medium and high permeability cores were demonstrated.Notably,the core with a high permeability of 913.58 mD exhibited a plugging rate of 98.55%.This study establishes the foundations of medium and high permeability reservoirs plugging with novel active crude oil plugging agents in severe environments.
基金supported by the National Natural Science Foundation of China(No.21602124)Fluorine Silicone Materials Collaborative Fund of Shandong Provincial Natural Science Foundation(No.ZR2021LFG007)+1 种基金Key R&D Program of Shandong Province(No.2019JZZY020229)the Young Scholars Program of Shandong University(No.2018WLJH40)。
文摘An amphiphilic derivative with a large Stokes shift by introducing flexible hydrophilic long chains into a rigid ethylene-pyrene compound have been successfully synthesized.The alkylated compound exhibited a notable change in charge distribution,facilitating cation-π interactions.Through the process of amphiphilic self-assembly,the formation of highly ordered aggregates enabled effective photo-dimerization under 449 nm LED irradiation.Notably,this photo-responsive technology not only exhibited advanced multi-color emission effects,including white light emission but also exhibited environmentally friendly behavior in the aqueous phase.
基金supported by the Major Project of Ningbo Science and Technology Innovation 2025(2021Z092)the Defense Industrial Technology Development Program(JCKY2021513B001).
文摘Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.
基金supported by the National Natural Science Foundation of China(22071020,22171041,22271043,22205034)Natural Science Foundation of Jilin Province Science and Technology Department(20220101045JC)the Fundamental Research Funds for the Central Universities(2412021QD008,2412022QD012)
文摘Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely distributed solar energy and alleviate the world's freshwater scarcity.Herein,an amphiphilic photothermal membrane is prepared through the self-assembly of hydrophilic heteropoly blue(HPB,H_(3)PMo_(12)O_(40))and hydrophobic surfactant(dioctadecyl dimethyl ammonium bromide,DODA).Benefiting from the synergistic effects of alternating functional hydrophilic HPB and hydrophobic DODA layers,the flexible membrane based on two-dimensional DODA-HPB self-assemblies(DODA-HPB/Nylon66)exhibits superior photothermal conversion properties,showing promising prospects in applications of solar desalination and wastewater treatment.
文摘[Objective] The research was aimed to study the adsorption behavior of p-nitroaniline from aqueous solution by porous hollow carbonaceous spheres (PHCSs).[Method] The effects of pH,temperature and amount of carbonaceous microspheres on adsorption behavior of p-nitroaniline were investigated.[Result] The adsorption amount was affected by temperature slightly,and it decreased with the increase of temperature within a certain range.PHCSs had a higher adsorption capacity as pH was in the range of 2.0-8.0.The adsorption amount of p-nitroaniline was proportional to PHCSs amount within a certain range until it reached a saturation level.The adsorption isotherms of p-nitroaniline appeared to be nonlinear and obeyed to Freundlich equation very well.[Conclusion] The amphiphilic property and the specific chemical functional groups of PHCSs enable them to be a potentially excellent sorbent.
文摘Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were charac-terized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation e ciency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.
基金National Natural Science Foundation of China(Grant No.81473156,81673365,81273454)Doctoral Foundation of the Ministry of Education(Grant No.20130001110055)National Key Basic Research Program(Grant No.2013CB932501)
文摘Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles(NPs) by a double emulsion-solvent evaporation(DESE) method. The particle size and drug encapsulation efficacy(EE) were compared to evaluate and optimize the preparation parameters. The mixed NPs had average size ranging from(102±1) nm to(137±5) nm, and the zeta potential turned to positive with incorporation of the amphiphilic dendrimer. The NPs showed different EE of docetaxel(DTX) and paclitaxel(PTX) with higher affinity to more lipophilic PTX. The blank mixed NPs showed little cytotoxicity, and the DTX-loaded NPs could effectively facilitate the antiproliferation activity on PC-3 cells. The NPs could be used as an effective drug delivery system, and its anti-tumor effect is worthy of further study.
基金supported by the National 973 Program(No.2009CB623402)the National Natural Science Foundation of China(No.20974094)
文摘Three well-defined diblock copolymers ofpoly(methyl methacrylate-b-methacrylic acid) (P(MMA-b-MAA)) were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid) (PMAA) chain lengths. These copolymers were blended with PVC to fabricate porous membranes via phase inversion process. Membrane morphologies were observed by scanning electron microscopy (SEM), and chemical composition changes of the membrane surfaces were measured by X-ray photoelectron spectroscopy (XPS). Static and dynamic protein adsorption experiments were used to evaluate antifouling properties of the blend membranes. It was found that, the blend membranes containing longer PMAA arm length showed lower static protein adsorption, higher water permeation flux and better protein solution flux recovery.
基金Supported by the National Natural Science Foundation of China(No.21276033)the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substances(Nos.SKL-BASS1711,SKL-BASS1707)the National Undergraduates Innovation and Entrepreneurship Training Program of China(No.201711258000001)
文摘To overcome the fast or burst release of hydrophilic drugs from hydrophilic alginate-based carriers,hydrophobic molecule(vinyl acetate,VAc)was grafted on alginate(Alg),which was further used to prepare drug carriers.Amphiphilic Alg-g-PVAc hydrogel beads were firstly prepared by emulsification/internal gelation technique for the loading of bovine serum albumin(BSA).Then,chitosan was coated on the surface of beads to form novel amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS)microcapsules.The BSA-loading amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS)microcapsules display similar morphology and size to the hydrophilic alginate/chitosan(AC)microcapsules.However,the drug loading and loading efficiency of BSA in Alg-g-PVAc/CS microcapsules are higher,and the release rate of BSA from Alg-g-PVAc/CS microcapsules is slower.The results demonstrate that the introduction of hydrophobic PVAc on alginate can effectively help retard the release of BSA,and the higher degree of substitution is,the slower the release rate is.In addition,the complex membrane can also be adjusted to delay the release of BSA.As a whole,amphiphilic sodium alginate-vinyl acetate/CS microparticles could be developed for macromolecular drug delivery.
基金supported by Health and Family Planning Commission of Jilin Province (No. 2017J056)
文摘Recently, much special attention has been focused on the development of amphiphilic copolymers.Herein, a reduction-sensitive stearic acid grafted-Bletilla striata polysaccharide copolymer(BSP-ss-SA)was synthesized and characterized. BSP-ss-SA copolymer could spontaneously form micelles with an average particle size of(106 ? 4.36) nm. Particle sizes were dramatically larger under 10 mmol/L dithiothreitol(DTT) than that in absence of 10 mmol/L DTT. Docetaxel loading content and encapsulation efficiency of micelles were 5.94 wt% and 72.75 wt%, respectively. The docetaxel release rate in vitro in micelles could be remarkably accelerated in pH 7.4 phosphate buffer solution(PBS) containing 10 mmol/L DTT compared with that of micelles(0 mmol/L DTT). Furthermore, MTT results demonstrated the anticancer activities in vitro of docetaxel-loaded BSP-ss-SA micelles on HepG2 were superior to that of docetaxel injection. BSP-ss-SA copolymer might be a promising nanocarrier for cancer chemotherapy drugs.
基金Supported by the National Natural Science Foundation of China and the State Education Committee of China
文摘Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.