期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cloud Radiative Forcing in Asian Monsoon Region Simulated by IPCC AR4 AMIP Models 被引量:8
1
作者 李剑东 刘屹岷 吴国雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期923-939,共17页
This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4... This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region. 展开更多
关键词 cloud radiative forcing (CRF) amip models Asian monsoon region Tibet Plateau (TP) active convective region
在线阅读 下载PDF
The Investigation of Atmospheric Angular Momentum as a Contributor to Polar Wobble and Length of Day Change with AMIP II GCM Data 被引量:1
2
作者 钟敏 闫昊明 朱耀仲 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第2期287-296,共10页
The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological... The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological Agency (JMA), from the reanalysis data of the National Centers for the Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), and from the operational objective analysis data of JMA, respectively. The comparison shows that during the period from 1985 to 1995, the values of the pressure terms in the equatorial components of AAM functions calculated from three data sets agree with each other better along 90°E longitude than along Greenwich meridian direction. The axial component of relative AAM function estimated from GSM 9603 agrees well with those from the other two data sets in terms of seasonal variations with the moderate amplitudes, but not so well with the composite axial component of relative AAM functions estimated from 23 GCM models anticipating in the first phase of AMIP. In addition, its interannual variation from 1979 to 1996 shows the main characteristics of ENSO evolution, just as does the axial component of relative AAM function estimated from NCEP reanalysis data except for the period of anomalous ENSO from 1991 to 1993. 展开更多
关键词 Atmospheric Model Inter–comparison Project (amip) Atmospheric Angular Momentum (AAM) Earth rotation
在线阅读 下载PDF
The Asymmetric Effects of El Ni?o and La Ni?a on the East Asian Winter Monsoon and Their Simulation by CMIP5 Atmospheric Models 被引量:3
3
作者 Zhun GUO Tianjun ZHOU Bo WU 《Journal of Meteorological Research》 SCIE CSCD 2017年第1期82-93,共12页
E1 Nifio-Southem Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Nifia events on the EAWM is not a mirror image of that... E1 Nifio-Southem Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Nifia events on the EAWM is not a mirror image of that of E1 Nifio events. Although the EAWM becomes generally weaker during El Nifio events and stronger during La Nifia winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during E1 Nifio years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Nifio events and the WNP cyclone during La Nifia events; specifically, the center of the WNP cyclone during La Nifia events is westward-shifted relat- ive to its El Nifio counterpart. This central-position shift results from the longitudinal shift of remote E1 Nifio and La Nifia anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circula- tions are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux an- omalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations. 展开更多
关键词 amip (Atmospheric Model Intercomparison Project) East Asian winter monsoon ENSO asymmetriceffects CLOUD PRECIPITATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部