The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi...The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi-CG and Bi-CR methods for the solution of the generalized Sylvester-transpose matrix equationp i=1(Ai X Bi+Ci XTDi)=E(including Lyapunov,Sylvester and Sylvester-transpose matrix equations as special cases).Numerical results validate that the proposed algorithms are much more efcient than some existing algorithms.展开更多
We present a flexible version of GPBi-CG algorithm which allows for the use of a different preconditioner at each step of the algorithm. In particular, a result of the flexibility of the variable preconditioner is to ...We present a flexible version of GPBi-CG algorithm which allows for the use of a different preconditioner at each step of the algorithm. In particular, a result of the flexibility of the variable preconditioner is to use any iterative method. For example, the standard GPBi-CG algorithm itself can be used as a preconditioner, as can other Krylov subspace methods or splitting methods. Numerical experiments are conducted for flexible GPBi-CG for a few matrices including some nonsymmetric matrices. These experiments illustrate the convergence and robustness of the flexible iterative method.展开更多
When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the comput...When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.展开更多
Recently Y. Saad proposed a flexible inner-outer preconditioned GMRES algorithm for nonsymmetric linear systems [4]. Following their ideas, we suggest an adaptive preconditioned CGS method, called CGS/GMRES (k), in wh...Recently Y. Saad proposed a flexible inner-outer preconditioned GMRES algorithm for nonsymmetric linear systems [4]. Following their ideas, we suggest an adaptive preconditioned CGS method, called CGS/GMRES (k), in which the preconditioner is constructed in the iteration step of CGS, by several steps of GMRES(k). Numerical experiments show that the residual of the outer iteration decreases rapidly. We also found the interesting residual behaviour of GMRES for the skewsymmetric linear system Ax = b, which gives a convergence result for restarted GMRES (k). For convenience, we discuss real systems.展开更多
The attitude optimal control problem (OCP) of a two-rigid-body space- craft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the ...The attitude optimal control problem (OCP) of a two-rigid-body space- craft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the external torque, a dynamic equation of three-dimensional attitude motion of the system is formulated. The attitude motion planning problem of the coupled-rigid-body spacecraft can be converted to a dis- crete nonlinear programming (NLP) problem using the Chebyshev-Gauss pseudospectral method (CGPM). Solutions of the NLP problem can be obtained using the sequential quadratic programming (SQP) algorithm. Since the collocation points of the CGPM are Chebyshev-Gauss (CG) points, the integration of cost function can be approximated by the Clenshaw-Curtis quadrature, and the corresponding quadrature weights can be calculated efficiently using the fast Fourier transform (FFT). To improve computational efficiency and numerical stability, the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of state and con- trol variables. Furthermore, numerical float errors of the state differential matrix and barycentric weights can be alleviated using trigonometric identity especially when the number of CG points is large. A simple yet efficient method is used to avoid sensitivity to the initial values for the SQP algorithm using a layered optimization strategy from a feasible solution to an optimal solution. Effectiveness of the proposed algorithm is perfect for attitude motion planning of a two-rigid-body spacecraft coupled by a ball-in-socket joint through numerical simulation.展开更多
文摘The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi-CG and Bi-CR methods for the solution of the generalized Sylvester-transpose matrix equationp i=1(Ai X Bi+Ci XTDi)=E(including Lyapunov,Sylvester and Sylvester-transpose matrix equations as special cases).Numerical results validate that the proposed algorithms are much more efcient than some existing algorithms.
文摘We present a flexible version of GPBi-CG algorithm which allows for the use of a different preconditioner at each step of the algorithm. In particular, a result of the flexibility of the variable preconditioner is to use any iterative method. For example, the standard GPBi-CG algorithm itself can be used as a preconditioner, as can other Krylov subspace methods or splitting methods. Numerical experiments are conducted for flexible GPBi-CG for a few matrices including some nonsymmetric matrices. These experiments illustrate the convergence and robustness of the flexible iterative method.
文摘When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.
基金Supported by the State Major Key Project for Basic Researchesthe Doctorial Program Foundation of China
文摘Recently Y. Saad proposed a flexible inner-outer preconditioned GMRES algorithm for nonsymmetric linear systems [4]. Following their ideas, we suggest an adaptive preconditioned CGS method, called CGS/GMRES (k), in which the preconditioner is constructed in the iteration step of CGS, by several steps of GMRES(k). Numerical experiments show that the residual of the outer iteration decreases rapidly. We also found the interesting residual behaviour of GMRES for the skewsymmetric linear system Ax = b, which gives a convergence result for restarted GMRES (k). For convenience, we discuss real systems.
基金supported by the National Natural Science Foundation of China(No.11472058)
文摘The attitude optimal control problem (OCP) of a two-rigid-body space- craft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the external torque, a dynamic equation of three-dimensional attitude motion of the system is formulated. The attitude motion planning problem of the coupled-rigid-body spacecraft can be converted to a dis- crete nonlinear programming (NLP) problem using the Chebyshev-Gauss pseudospectral method (CGPM). Solutions of the NLP problem can be obtained using the sequential quadratic programming (SQP) algorithm. Since the collocation points of the CGPM are Chebyshev-Gauss (CG) points, the integration of cost function can be approximated by the Clenshaw-Curtis quadrature, and the corresponding quadrature weights can be calculated efficiently using the fast Fourier transform (FFT). To improve computational efficiency and numerical stability, the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of state and con- trol variables. Furthermore, numerical float errors of the state differential matrix and barycentric weights can be alleviated using trigonometric identity especially when the number of CG points is large. A simple yet efficient method is used to avoid sensitivity to the initial values for the SQP algorithm using a layered optimization strategy from a feasible solution to an optimal solution. Effectiveness of the proposed algorithm is perfect for attitude motion planning of a two-rigid-body spacecraft coupled by a ball-in-socket joint through numerical simulation.