期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
Different extractable pools of Cd and Pb in agricultural soil under amendments:Water-soluble concentration sensitively indicates metal availability 被引量:1
1
作者 Zidi Wang Wenyao Tang +8 位作者 Xiaodong Ding Qiang Dong Yingying Guo Guangliang Liu Yanwei Liu Yong Liang Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2025年第4期297-308,共12页
Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies... Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies. 展开更多
关键词 Heavy metals Water-soluble concentrations Enriched stable isotopes Soil amendments Sequential extraction Soil pH
原文传递
Response of abundant and rare microbial taxa to three iron-carbon composite amendments in metal-contaminated agricultural soil
2
作者 Ting Yang Jiacan Li +6 位作者 Ying Yuan Xin Zheng Yifei Liu Bing Zhang Tan Chen Jun Jin Linlan Zhuang 《Journal of Environmental Sciences》 2025年第11期170-185,共16页
Traditional studies of microbial succession under iron-carbon composite(Fe-C)amendment application have focused on the entire microbial community,with limited attention to the responses and ecological roles of abundan... Traditional studies of microbial succession under iron-carbon composite(Fe-C)amendment application have focused on the entire microbial community,with limited attention to the responses and ecological roles of abundant or rare taxa.Herein,a 90-day microcosm incubation was conducted to investigate the effects of three Fe-C amendments,including Fe_(3)O_(4)-modified biochar(FeC-B),ferrihydrite-natural humic acid(FeC-N),and ferrihydrite-synthetic humic-like acid(FeC-S),on distribution patterns,assembly processes,and ecological functions of both abundant and rare subcommunities.Our results showed that Fe-C amendments significantly affected theα-diversity of rare taxa,particularly under FeC-B treatment,with minimal impact on abundant taxa.Fe-C amendments also reshaped the community structures of both groups.Rare taxa,representing 63.9%of Operational Taxonomic Unit(OTU)richness but only 1.6%of total abundance,played a key role in community diversity and were more susceptible to Fe-C amendments.Certain rare taxa transitioned to abundant status,demonstrating their potential as a microbial seed bank.Abundant taxa were positioned more centrally within the networks,and Fe-C applications promoted cooperative interactions between abundant and rare species.Deterministic processes dominated the assembly of the rare subcommunity,while stochastic processes primarily influenced the abundant bacterial community.Fe-C amendments reduced community differentiation among rare taxa while increasing variability among abundant groups.Functional diversity of rare groups surpassed that of abundant groups,with notable enhancement in nitrogen cycling-related genes under Fe-C treatments.This study highlights the complementary roles of abundant and rare taxa in soil remediation,providing insights for optimizing remediation strategies. 展开更多
关键词 Metal-contaminated farmland Iron-carbon composite amendments Abundant taxa Rare taxa Community assembly Ecological functions
原文传递
Soil inorganic amendments produce safe rice by reducing the transfer of Cd and increasing key amino acids in brown rice 被引量:1
3
作者 Fanyi Kong Shenggao Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期121-132,共12页
The digestibility of cadmium(Cd)in brown rice is directly related to amino acid metabolism in rice and human health.In our field study,three kinds of alkaline calcium-rich soil inorganic amendments(SIAs)at three dosag... The digestibility of cadmium(Cd)in brown rice is directly related to amino acid metabolism in rice and human health.In our field study,three kinds of alkaline calcium-rich soil inorganic amendments(SIAs)at three dosages were applied to produce safe rice and improve the quality of rice in Cd-contaminated paddy.With the increased application of SIA,Cd content in iron plaque on rice root significantly increased,the transfer of Cd from rice root to grain significantly decreased,and then Cd content in brown rice decreased synchronously.The vitro digestibility of Cd in brown rice was estimated by a physiologically based extraction test.Results showed that more than 70%of Cd in brown rice could be digested by simulated gastrointestinal juice.Based on the total and digestible Cd contents in brown rice to evaluate the health risk,the application of 2.25 ton SIA/ha could produce safe rice in acidic slightly Cd-contaminated paddy soils.The amino acids(AAs)in brown rice were determined by high-performance liquid chromatography.The contents of 5 key AAs(KAAs)that actively respond to environmental changes increased significantly with the increased application of SIA.The structural equation model indicated that KAAs could be affected by the Cd translocation capacity from rice root to grain,and consequently altered the ratio of indigestible Cd in brown rice.The formation of indigestible KAAs-Cd complexes by combining KAAs(phenylalanine,leucine,histidine,glutamine,and asparagine)with Cd in brown rice could be considered a potential mechanism for reducing the digestibility of Cd. 展开更多
关键词 Cadmium digestibility Soil inorganic amendments Safe rice Amino acid Priming effect Health risk
原文传递
Effect of Organic and Inorganic Soil Amendments on Cadmium Immobilization and Bioaccumulation in Chinese Cabbage 被引量:1
4
作者 JIA Manke WU Chunrong +4 位作者 LI Yinghua TAN Zhongfu CAI Guoyong LUO Shaohua LIU Liming 《Wuhan University Journal of Natural Sciences》 CSCD 2024年第6期600-610,共11页
Chemical immobilization,as a cost-effective and environmentally friendly technique,has been widely researched in the remediation of cadmium(Cd)-contaminated soil.The key is to find appropriate amendments and optimize ... Chemical immobilization,as a cost-effective and environmentally friendly technique,has been widely researched in the remediation of cadmium(Cd)-contaminated soil.The key is to find appropriate amendments and optimize their use.In this study,the effects of the application of an inorganic material(phosphorus slag(PS))and organic materials(biochar(BC)and beer lees(BL)),individually or combinedly on the immobilization of Cd in contaminated soil and subsequent bioaccumulation in Chinese cabbage were investigated.The results showed that PS and PS+BL were more effective in decreasing exchangeable Cd(EX-Cd)than other treatments,decreased by 91.2%in the PS treatment and by 64.0%in the PS+BL treatment.However,the soil enzyme activity and soil microbial activity decreased in the treatment with PS alone.In contrast,the combination use of PS and BL could increase soil enzyme activity,soil microbial activity,and functional diversity,and decrease EX-Cd as well.Moreover,the PS+BL treatment reduced the accumulation of Cd in Chinese cabbage most effectively,81.5%in roots and 72.5%in shoots.This treatment could also increase the aboveground height and chlorophyll content of Chinese cabbage while reducing the content of malondialdehyde(MDA).Thus,the PS+BL treatment is highly recommended for Cd immobilization,as it can improve soil quality and reduce Cd accumulation in Chinese cabbage at the same time and hence promote plant growth. 展开更多
关键词 cadmium(Cd) metal pollution soil amendments VEGETABLE
原文传递
Response of Rice Cultivars to Elevated Air Temperature and Soil Amendments: Implications towards Climate Change Adaptations and Mitigating Global Warming Potentials
5
作者 Muhammad Aslam Ali S. K. Md. Fazlay Rabbi +8 位作者 Md. Abdul Baten Hafsa Jahan Hiya Shah Tasdika Auyon Md. Shamsur Rahman Deboki Kundu Khairul Amin Sanjit Chandra Barman Tanver Hossain Fariha Binte Nobi 《American Journal of Climate Change》 2024年第3期406-426,共21页
Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to inv... Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition. 展开更多
关键词 Rice Paddy Soil amendments CH4 Flux GWPs Elevated Air Temperature
在线阅读 下载PDF
Fragipan Soil Changes with Growth of Annual Ryegrass and Festulolium with Surface Applied Amendments
6
作者 Lloyd Murdock Anastasios Karathanasis +2 位作者 Dottie Call Dana Lee Dinnes Amitava Chatterjee 《Open Journal of Soil Science》 2024年第12期765-777,共13页
A greenhouse experiment was conducted involving complete/intact 100 cm cores of a fragipan soil. The cores were maintained in moist conditions throughout the experiment as annual ryegrass (Lolium multiflorum) or festu... A greenhouse experiment was conducted involving complete/intact 100 cm cores of a fragipan soil. The cores were maintained in moist conditions throughout the experiment as annual ryegrass (Lolium multiflorum) or festulolium (Lolium spp and Fescue spp hybrid) were grown with and without additional surface applied amendments, including NaF, NaNO3, NaCl, and KCl. The results suggest a significant effect of annual ryegrass and festulolium on fragipan horizon degradation after 24 months. Annual ryegrass and festulolium were found to effectively change the structure of the fragipan horizon when planted on the soil surface and roots grew through the upper soil profile and penetrated into the fragipan. The fragipan structural change (degradation) appeared to increase with each planting sequence, particularly with soybean crop rotations. Sodium nitrate added to the soil surface with the growth of annual ryegrass resulted in a significant synergistic effect for degrading the fragipan horizon. The other amendments were not as effective in causing additional fragipan degradation. 展开更多
关键词 Fragipan Soil Horizons Plant Root Restriction Degradation of Compacted Sections Effect of Ryegrass and Festulolium Root Penetration Effect of NaF NaNO3 NaCl KCl Surface Applied amendments Soybean-Ryegrass and Soybean-Festulolium Rotations
在线阅读 下载PDF
Effect of amendments on growth and metal uptake of giant reed(Arundo donax L.) grown on soil contaminated by arsenic,cadmium and lead 被引量:6
7
作者 杨淼 肖细元 +2 位作者 苗旭峰 郭朝晖 王凤永 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1462-1469,共8页
The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown o... The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system. 展开更多
关键词 PHYTOREMEDIATION giant reed soil amendments heavy metal contaminated soil metal uptake
在线阅读 下载PDF
Residual Effects of Phosphate Amendments on Rainfed Rice (Oryza sativa L.) Nutrition and Soil Properties in Three Agroecological Zones of Côte d’Ivoire
8
作者 Affi Jeanne Bongoua-Devisme Wondouet Hippolyte Kpan +3 位作者 Pla Kouassi Adou Franck Michaël Lemonou Bahan Konan-Kan Hippolith Kouadio Anselme Kan Louis Koko 《Open Journal of Soil Science》 2024年第10期606-634,共29页
A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple super... A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple superphosphate were tested in three agroecological zones over three consecutive years of cultivation. This study revealed that the application of Moroccan phosphate rock (PRM) and/or triple superphosphate (TSP) did not significantly affect soil cation exchange capacity (CEC) and organic carbon (Corg) content. However, there was a negative residual effect of PRM-rich treatments on soil pH and K and N content, but the impact varies depending on the characteristics of the soils studied. Furthermore, nutrient losses, notably nitrogen from −17.5 to −267.7 kg/ha and potassium (−0.1 to 0.7 kg/ha), were observed in all treatments. Only phosphorus showed a positive balance of +49.56 to +52 kg/ha in PRM-rich treatments. Treatment T3, composed of 80% RPM and 20% TSP, was the most effective in all zones, with a relative increase in grain yields of over 100% compared to the control. These results suggest that the input of natural phosphate rock can significantly improve rice yields and soil properties in the studied agroecological zones in Côte d’Ivoire. 展开更多
关键词 Phosphate Amendment Moroccan Phosphate Rock Triple Superphosphate Yield After-Effect NUTRITION Crop Balance Cote d’Ivoire
在线阅读 下载PDF
Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient,enzyme activity and heavy metal content 被引量:86
9
作者 NING Chuan-chuan GAO Peng-dong +3 位作者 WANG Bing-qing LIN Wei-peng JIANG Ni-hao CAI Kun-zheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1819-1831,共13页
Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmenta... Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to de- velop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009-2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continu- ous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety. 展开更多
关键词 chemical fertilizer organic amendments soil fertility VEGETABLE soil health heavy metal
在线阅读 下载PDF
Effect of amendments on the leaching behavior of alkaline anions and metal ions in bauxite residue 被引量:6
10
作者 Tao Tian Jinaju Zhou +4 位作者 Feng Zhu Yuzhen Ye Ying Guo William Hartley Shengguo Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第11期74-81,共8页
A column leaching experiment was used to investigate the efficacy of amendments on their ability to remove alkaline anions and metal ions from bauxite residue leachates.Treatments included,simulated acid rain (AR),pho... A column leaching experiment was used to investigate the efficacy of amendments on their ability to remove alkaline anions and metal ions from bauxite residue leachates.Treatments included,simulated acid rain (AR),phosphogypsum + vermicompost (PVC),phosphogypsum + vermicompost + simulated acid rain (PVA),and biosolids + microorganisms (BSM) together with controls (CK).Results indicated that amendment could effectively reduce the leachate pH and EC values,neutralize OH-,CO32-,HCO3-,and water soluble alkali,and suppress arsenic (As) content.Correlation analysis revealed significant linear correlations with pH and concentrations of OH-,CO32-,HCO3-,water-soluble alkali,and metal ions.BSM treatment showed optimum results with neutralizing anions (OH-,CO32-,and HCO3-),water soluble alkali,and removal of metal ions (Al,As,B,Mo,V,and Na),which was attributed to neutralization from the generation of small molecular organic acids and organic matter during microbial metabolism.BSM treatment reduced alkaline anions and metal ions based on neutralization reactions in bauxite residue leachate,which reduced the potential pollution effects from leachates on the soil surrounding bauxite residue disposal areas. 展开更多
关键词 BAUXITE RESIDUE LEACHATE amendments ALKALINE ANIONS Metal ions
原文传递
Surface Amendments Can Ameliorate Subsoil Acidity in Tea Garden Soils of High-Rainfall Environments 被引量:7
11
作者 WANG Lei Clayton R. BUTTERLY +5 位作者 CHEN Qiuhui MU Zhibo WANG Xia XI Yunguan ZHANG Jibing XIAO Xingji 《Pedosphere》 SCIE CAS CSCD 2016年第2期180-191,共12页
Strongly acidic soils (pH 〈 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden s... Strongly acidic soils (pH 〈 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden soils. A 120-d glasshouse column leaching experiment was conducted using commonly available soil ameliorants. Alkaline slag (AS) and organic residues, pig manure (PM) and rapeseed cake (RC) differing in ash alkalinity and C/N ratio were incorporated alone and in combination into the surface (0-15 cm) of soil columns (10 cm internal diameter x 50 cm long) packed with soil from the acidic soil layer (15-30 cm) of an Ultisol (initial pH -- 4.4). During the 120-d experiment, the soil columns were watered (about 127 mm over 9 applications) according to the long-term mean annual rainfall (1 143 mm) and the leachates were collected and analyzed. At the end of the experiment, soil columns were partitioned into various depths and the chemical properties of soil were measured. The PM with a higher C/N ratio increased subsoil pH, whereas the RC with a lower C/N ratio decreased subsoil pH. However, combined amendments had a greater ability to reduce subsoil acidity than either of the amendments alone. The increases in pH of the subsoil were mainly ascribed to decreased base cation concentrations and the decomposition of organic anions present in dissolved organic carbon (DOC) and immobilization of nitrate that had been leached down from the amended layer. A significant (P 〈 0.05) correlation between alkalinity production (reduced exchangeable acidity - N-cycle alkalinity) and alkalinity balance (net alkalinity production - N-cycle alkalinity) was observed at the end of the experiment. Additionally, combined amendments significantly increased (P ~ 0.05) subsoil cation concentrations and decreased subsoil A1 saturation (P 〈 0.05). Combined applications of AS with organic amendments to surface soils are effective in reducing subsoil acidity in high-rainfall areas. Further investigations under field conditions and over longer timeframes are needed to fully understand their practical effectiveness in ameliorating acidity of deeper soil layers under naturally occurring leaching regimes. 展开更多
关键词 Al saturation LEACHING NITRATE organic amendments organic anions pH soil acidity soil alkalinity
原文传递
Plant Cover and Soil Biochemical Properties in a Mine Tailing Pond Five Years After Application of Marble Wastes and Organic Amendments 被引量:7
12
作者 R.ZORNOZA A.FAZ +3 位作者 D.M.CARMONA S.KABAS S.MARTíNEZ-MARTíINEZ J.A.ACOSTA 《Pedosphere》 SCIE CAS CSCD 2012年第1期22-32,共11页
Tailing ponds pose environmental hazards, such as toxic metals which can contaminate the surroundings through wind and water erosions and leaching. Various chemical and biochemical properties, together with extractabl... Tailing ponds pose environmental hazards, such as toxic metals which can contaminate the surroundings through wind and water erosions and leaching. Various chemical and biochemical properties, together with extractable and soluble metals were measured five years after reclamation of a polluted soil affected by former mining activities. This abandoned mine site contains large amounts of Fe-oxyhydroxides, sulphates, and heavy metals. As a consequence, soils remain bare and the soil organic matter content is low (〈 3 g kg-1). Marble waste, pig manure and sewage sludge were applied in 2004. Plant cover and richness, and soil chemical, biochemical and biological parameters were analysed five years later. Results showed that all soil biochemical properties as well as vegetation cover and richness were higher in treated soils than in the untreated contaminated plots (control), although organic matter, pH values and extractable metals concentrations were similar among treatments. Soluble cadmium and zinc were lower in the amended plots than in control. 展开更多
关键词 hydrolase activities metal pollution microbial biomass organic amendments REMEDIATION
原文传递
Effects of Long-Term Organic Amendments on Soil Organic Carbon in a Paddy Field: A Case Study on Red Soil 被引量:9
13
作者 HUANG Qing-hai LI Da-ming +8 位作者 LIU Kai-lou YU Xi-chu YE Hui-cai HU Hui-wen XU Xiao-lin WANG Sai-lian ZHOU Li-jun DUAN Ying-hua ZHANG Wen-ju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第3期570-576,共7页
Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expan... Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1). 展开更多
关键词 long-term field experiment organic amendments soil organic carbon paddy soil derived from red earth
在线阅读 下载PDF
Relative Effectiveness of Various Amendments in Improving Yield and Nutrient Uptake under Organic Crop Production 被引量:2
14
作者 Sukhdev S. Malhi 《Open Journal of Soil Science》 2012年第3期299-311,共13页
In organic farming, artificial/synthetic inorganic fertilizers/chemicals are not applied to increase crop yields, but adequate amounts of nutrients are essential for sustainable high production from agricultural crops... In organic farming, artificial/synthetic inorganic fertilizers/chemicals are not applied to increase crop yields, but adequate amounts of nutrients are essential for sustainable high production from agricultural crops. Two 3-year (2008 - wheat, 2009 – pea, and 2010 - barley) field experiments were conducted on certified organic farms near Spalding (Dark Brown Chernozem – Typic Haploboroll) and Star City (Gray Luvisol – Typic Haplocryalf) in northeastern Saskatche-wan to determine the relative effectiveness of various organic amendments (compost, alfalfa pellets, wood ash, rock phosphate, Penicillium bilaiae, MykePro, or gypsum), and intercropping of non-legume (wheat, barley) and legume (pea) annual crops on seed yield, total biomass yield (TBY) and nutrient uptake in seed + straw of wheat, pea and barley. In 2008, seed yield, TBY and nutrient uptake of wheat increased (but small) with compost and alfalfa pellets. In 2010, seed yield, TBY and nutrient uptake of barley increased substantially with compost and alfalfa pellets and moderately with wood ash. Other amendments had little or no effect on crop yield and nutrient uptake. In 2009, there was no beneficial effect of any amendment on yield and nutrient uptake of pea, most likely due to fixation of N which is the most limiting nutrient in these soils. Intercropping of wheat or barley with pea produced greater seed yield and nutrient uptake per unit land area basis compared to wheat or barley grown as sole crops in most cases. In conclusion, our results suggest potential benefits in improving yield and nutrient uptake of wheat and barley from compost, alfalfa pellets and possibly wood ash, most likely by preventing deficiencies of some nutrients, especially N, lacking in these soils under organic farming. Our findings also suggest the need for future research to determine the feasibility of rock phosphate, Penicillium bilaiae, MykePro, gypsum or other amendments in preventing P and/or S deficiency in organic crops using soils extremely deficient in these nutrients. 展开更多
关键词 amendments BARLEY NUTRIENT Uptake ORGANIC PEA Wheat YIELD
暂未订购
Soil organic matter amendments in date palm groves of the Middle Eastern and North African region:a mini-review 被引量:1
15
作者 Rawan MLIH Roland BOL +1 位作者 Wulf AMELUNG Nadhem BRAHIM 《Journal of Arid Land》 SCIE CSCD 2016年第1期77-92,共16页
Countries in the Middle Eastern and North African (MENA) region are among the most water-scarce regions in the world, and their dryland soils are usually poor in organic carbon content (<0.5%). In this study, we su... Countries in the Middle Eastern and North African (MENA) region are among the most water-scarce regions in the world, and their dryland soils are usually poor in organic carbon content (<0.5%). In this study, we summarize examples of how people in the few oases of the MENA region overcome environmental challenges by sustainably managing economically important date production. On the basis of the limited studies found in the existing literature, this mini-review focuses on the role of traditional soil organic matter amendments beneath the soil surface as a key tool in land restoration. We conclude that soil organic matter amendments can be very successful in restoring soil water and preventing the soil from salinization. 展开更多
关键词 review Middle Eastern and North African (MENA) DRYLANDS organic matter amendments oasis agrosystem date palm production
在线阅读 下载PDF
Application of Soil Amendments Reduced Cadmium Bioavailability but Restrained Soybean Growth 被引量:1
16
作者 SUN Geng LUO Zun-chang +3 位作者 SUN Mei HUANG Feng-qiu ZHOU Xuan LIU Jie 《Agricultural Science & Technology》 CAS 2018年第4期29-35,共7页
The soybean is a crop which easily accumulates cadmium(Cd),which threatens human health.To assess the impact of the application of classic soil amendments on the Cd concentration in the soybean and the Cd bioavailabil... The soybean is a crop which easily accumulates cadmium(Cd),which threatens human health.To assess the impact of the application of classic soil amendments on the Cd concentration in the soybean and the Cd bioavailability in the soil,a field study was conducted in Xiangtan Country(XT)and Liling City(LL),with inorganic-organic-microbial matter(T1)and silicon-calcium-magnesium oxide from natural minerals(T2)as two soil amendments in this study.The results indicated that the soil pH in the two sites increased significantly,up to 0.7~1.1 units and the Cd concentration in the stem,leaf,husk and seed in the two sites decreased differently.Of which,the soil available Cd in Xiangtan County(XT)decreased by 11.9%~16.0%,the enrichment factor(EF)and translocation factor(TF)reduced by 37.9%and 23.5%,respectively.Both soil amendments were effective in increasing the soil pH,reducing the seed and soil available Cd,but the soil organic matter,total N,stem length and grain yields decreased slightly.In conclusion,the Cd bioavailability was reduced but the soybean growth was restrained with the application of the soil amendments. 展开更多
关键词 Soil amendments Soybean growth Cd bioavailability
在线阅读 下载PDF
Feasibility of Rock Phosphate and Other Amendments in Preventing P Deficiency in Barley on a P-Deficient Soil in Northeastern Saskatchewan 被引量:1
17
作者 Sukhdev S. Malhi Cecil L. Vera Stewart A. Brandt 《Agricultural Sciences》 2014年第14期1491-1500,共10页
In?the Canadian Prairies, many soils on organic farms are low in available P, and the only alternative is to use external sources to prevent P nutrient deficiency on these soils. A 3-year (2012 to 2014) field experime... In?the Canadian Prairies, many soils on organic farms are low in available P, and the only alternative is to use external sources to prevent P nutrient deficiency on these soils. A 3-year (2012 to 2014) field experiment was established in spring 2012 on a P-deficient soil near Kelvington, Saskatchewan, Canada, to determine the potential of organic amendments (alfalfa pellets, compost manure, thin stillage and distiller grain dry of wheat), inorganic amendments (rock phosphate granular, rock phosphate fine, wood ash and bone meal ash) and microbial inoculants/products (JumpStart&reg;and MYKE&reg;PRO), applied alone or in a combination with N and/or P commercial fertilizers, in preventing P deficiency and increasing seed yield, N and P uptake of barley. Compared to unfertilized control, N only treatment did not result in any significant increase in seed yield, while application of P alone increased seed yield significantly but to a lesser degree than when both N and P fertilizers were applied together in all 3 years. Rock phosphate did not result in any seed yield benefit, even when applied along with N fertilizer. Wood ash fine increased seed yield of barley significantly only in the presence of N fertilizer, with highest seed yield in the presence of both N + P fertilizers. Seed yield of barley increased moderately with alfalfa pellets, significantly with compost manure, and considerably with distiller grain dry of wheat, but highest seed yield was obtained from thin stillage, which was essentially similar to that obtained from the N + P fertilizer combination. There was no yield benefit from JumpStart or MykePro in any year and only slight benefit from bone meal ash in 2013. The addition of N fertilizer to MykePro or bone meal ash treatments increased seed yield, but highest yield was obtained when both N and P fertilizers were added, suggesting a lack of available P for optimum seed yield. With few exceptions, the response trends of total N and P uptake in seed + straw to the amendments studied were generally similar to those of seed yield. In conclusion, the organic amendment “thin stillage” provided balanced nutrition and produced yield and nutrient uptake of barley similar to balanced N + P fertilizer treatment, and it was closely followed by “distiller grain dry of wheat”, with moderate benefit from compost manure and some benefit from alfalfa pellets. In this extremely P-deficient soil, rock phosphate was not found effective in preventing P deficiency in barley, while wood ash and bone meal ash provided moderate increase in barley yield, with little yield benefit from JumpStart and MykePro, when other nutrients were not limiting in the soil. 展开更多
关键词 CEREALS Inorganic amendments N Uptake Organic amendments P-Deficiency Rock Phosphate Seed Yield
暂未订购
Apatite and Chitin Amendments Promote Microbial Activity and Augment Metal Removal in Marine Sediments 被引量:2
18
作者 Jinjun Kan Anna Obraztsova +4 位作者 Yanbing Wang Jim Leather Kirk G. Scheckel Kenneth H. Nealson Y. Meriah Arias-Thode 《Open Journal of Metal》 2013年第2期51-61,共11页
In situ amendments are a promising approach to enhance removal of metal contaminants from diverse environments including soil, groundwater and sediments. Apatite and chitin were selected and tested for copper, chromiu... In situ amendments are a promising approach to enhance removal of metal contaminants from diverse environments including soil, groundwater and sediments. Apatite and chitin were selected and tested for copper, chromium, and zinc metal removal in marine sediment samples. Microbiological, molecular biological and chemical analyses were applied to investigate the role of these amendments in metal immobilization processes. Both apatite and chitin promoted microbial growth. These amendments induced corresponding bacterial groups including sulfide producers, iron reducers, and phosphate solubilizers;all that facilitated heavy metal immobilization and removal from marine sediments. Molecular biological approaches showed chitin greatly induced microbial population shifts in sediments and overlying water: chitin only, or chitin with apatite induced growth of bacterial groups such as Acidobacteria, Betaproteobacteria, Epsilonproteobacteria, Firmicutes, Planctomycetes, Rhodospirillaceae, Spirochaetes, and Verrucomicrobia;whereas these bacteria were not present in the control. Community structures were also altered under treatments with increase of relative abundance of Deltaproteobacteria and decrease of Actinobacteria, Alphaproteobacteria, and Nitrospirae. Many ?of these groups of bacteria have been shown to be involved in metal reduction and immobilization. Chemical analysis ?of pore and overlying water also demonstrated metal immobilization primarily under chitin treatments. X-Ray absorption spectroscopy (XAS) spectra showed more sorbed Zn occurred over time in both apatite and chitin treatments (from 9% - 27%). The amendments improved zinc immobilization in marine sediments that led to significant changes in ??the mineralogy: easily mobile Zn hydroxide phase was converted to an immobile Zn phosphate (hopeite). In-situ amendment of apatite and chitin offers a great bioremediation potential for marine sediments contaminated with heavy metals. 展开更多
关键词 APATITE CHITIN amendments Marine Sediment DGGE MICROBIAL Community Copper Zinc CHROMIUM
暂未订购
Short-term residual effects of various amendments on organic C and N, and available nutrients in soil under organic crop production 被引量:1
19
作者 Sukhdev S. Malhi 《Agricultural Sciences》 2012年第3期375-384,共10页
Two 3-year (2008-2010, wheat-pea-barley) field experiments were conducted on certified organic farms near Spalding (Dark Brown Chernozem-Typic Haploboroll) and Star City (Gray Luvisol-Typic Haplocryalf) in northeaster... Two 3-year (2008-2010, wheat-pea-barley) field experiments were conducted on certified organic farms near Spalding (Dark Brown Chernozem-Typic Haploboroll) and Star City (Gray Luvisol-Typic Haplocryalf) in northeastern Sas-katchewan, Canada, to determine the residual effects of compost, alfalfa pellets, wood ash, rock phosphate, Penicillium bilaiae, gypsum and MykePro on organic C and N (total organic C [TOC], total organic N [TON], light fraction organic C [LFOC], light fraction organic N [LFON]) and mineralizable N (Nmin) in the 0 - 15 cm soil layer, and ammonium-N, nitrate-N, extractable P, exchangeable K and sulphate-S in the 0 - 15, 15 - 30 and 30 - 60 cm soil layers in autumn 2010. Compared to the unamended control, mass of TOC, TON, LFOC and LFON increased with compost and alfalfa pellets in both soils. However, the increases were much more pronounced for LFOC (by 125% - 133%) or LFON (by 102% - 103%) than TOC (by 19% - 29%) or TON (by 25% - 40%). The Nmin also increased in these two treatments compared to the control, but the increases were much smaller for compost than alfalfa pellets. In general, residual nitrate-N increased with increasing rate of compost and alfalfa pellets in the 0 - 15 and 15 - 30 cm layers in both soils. Extractable P increased with compost and exchangeable K with alfalfa pellets, but only in the 0 - 15 cm soil layer. Sulphate-S increased with compost, but mainly in the 30 - 60 cm soil layer. Soil pH usually increased with compost and more so with wood ash, but no effect of any amendment on ammonium-N. Overall, the quantity of organic C and N, and available nutrients in soil increased with compost and/or alfalfa pellets, but the magnitude varied with amendment and/or soil type. In conclusion, our findings suggest that soil quality and fertility can be improved with these organic amendments, suggesting sustainability of production from organic crops. 展开更多
关键词 amendments COMPOST ORGANIC C and N pH SOIL FERTILITY SOIL Quality
暂未订购
Views from Maritime Education and Training on the Full Implementation of 2010 STCW Amendments 被引量:1
20
作者 Ruan Wei 《Journal of Shipping and Ocean Engineering》 2013年第1期40-46,共7页
The full review of The International Convention on Standards of Training, Certification and Watch keeping for Seafarers (the STCW Convention) has been accomplished by International Maritime Organization (IMO) and ... The full review of The International Convention on Standards of Training, Certification and Watch keeping for Seafarers (the STCW Convention) has been accomplished by International Maritime Organization (IMO) and the new amendment, which is also named as Manila amendment, has been effective since 2012, with a transitional period of 2012-2017. Based on the system engineering context consisting of "Human, Machine and Environment", human factors at sea, i.e., those factors relevant to the seafarers, are consistently underlined. STCW convention is the unique but systematic international maritime legislation looking after the "professional competency standards" of seafarers. The amendment thereto is of great significance for the Maritime Education and Training (MET) systems, which should be fully understood so as to respond to it effectively. The paper analyzes major impacts brought by the amendment, with purposes to raise recommendations for MET systems to implement the amendment effectively. 展开更多
关键词 Maritime education and training 2010 STCW amendments seafarers training maritime strategy.
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部