Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requireme...Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.展开更多
Some environmental problems, especially soil salinity hinder the regional sustainable development of eastern China coastal region. Salinity mainly comes from tide weave, seawater flooding and seawater intrusion. Over ...Some environmental problems, especially soil salinity hinder the regional sustainable development of eastern China coastal region. Salinity mainly comes from tide weave, seawater flooding and seawater intrusion. Over exploitation of groundwater, which is the result of unfitful land use systems, leads to seawater intrusion and salt concentration increase. Agroforestry systems can enrich soil fertility and prevent soil salinization, furthermore help maintain biodiversity and enhance productivity. For the intergrated multiple ecosystems the most critical issue is to select optimum tree species and rationally arrange these plants. The basics of this multiple ecosystem is that different plants will occupy variable ecological niches within an area, both in space and in soil depth. Shelterbelts and trees intercropping with agricultural crops are major types of the multiple ecosystem. Shelterbelts can reduce wind speed and consequently lessen evaporation and erosion of the soil, increase pasture growth by up to 60% on exposed sites, increase crop yields by up to 25%. Besides intercropping with jujube, other agroforestry multiple ecosystem such as forestry plus agriculture, forestry plus agriculture plus fishery, and forestry plus animal husbandry are the most appropriate ways to utilise land resource in this region.展开更多
To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activiti...To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activities were analyzed.The results showed that:the soil bulk density of surface soil decreased and soil porosity and field capacity increased after afforestation with seabuckthorn.The plant was found to effectively reduce the soil pH,increase the soil conductivity,soil organic matters and available nutrients.Soil microorganism quantity,soil enzyme activities were both higher in 0-20 cm layer than in 20-40 cm layer.With the increase years of remediation with seabuckthorn,the quantity of soil microorganism and enzyme activities were increasing to a higher level 5 to 8 years later.Our study indicates that seabuckthorn can effectively improve soil physical and chemical properties,increase the quantity of soil microorganisms and enzyme activities,which is of great significance for the ecosystem restoration in mining areas.展开更多
A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems ...A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems (pas- toral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloafusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combi- nation with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora (77.20 t·ha-1) and A. nilotica (63.20 t·ha-1) planted under silvipastoral system were significantly higher than the sole plantation of (64.50 t·ha-1 and 52.75 t·ha-1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reduc- ing soil pH, displacing Na+ from the exchange complex, increasing or- ganic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation ofhighly alkali soils.展开更多
Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz...Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz and increase of crop yields. In detail it may adjust pH, depress alkalinity, reduce bulk density and compactness and increase water permeability and retention ability of the soil. Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil, Water and air.展开更多
A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during t...A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly展开更多
[Objectives]This study was conducted to clarify the improvement effects of different soil amelioration materials such as lime,green manure and bio-organic fertilizer on acidic tobacco-planting soil.[Methods]The dynami...[Objectives]This study was conducted to clarify the improvement effects of different soil amelioration materials such as lime,green manure and bio-organic fertilizer on acidic tobacco-planting soil.[Methods]The dynamic changes of soil pH,soil nutrients and enzyme activity were studied by applying lime,lime+green fertilizer,and lime+green fertilizer+biological organic fertilizer.[Results]①After the application of amelioration materials,the soil pH and available phosphorus content of tobacco-growing soil showed a stepwise change of first increasing and then decreasing,and became stable at 60 d after tobacco transplanting;the soil organic matter,alkali-hydrolyzable nitrogen and available potassium content showed a gradual change trend of"high-low-high";and the soil invertase and urease activity showed a gradual change trend of"low-high-low".②To 90 d after tobacco transplanting,the application of amelioration materials increased soil pH by 1.29-1.62 units,and increased organic matter content by 15.21%-20.86%,alkali-hydrolyzable nitrogen content by 6.83%-18.17%,available phosphorus content by 54.15%-217.85%,rapidly available potassium content by 11.42%-30.86%,soil invertase activity by 70.09%-18.93%,and soil urease activity by 64.07%-130.47%.③The combination of lime+green manure+alkaline microbial organic fertilizer had the best effect on the improvement of acidic tobacco-growing soil,and the effect of lime+green manure+acid microbial organic fertilizer on acidic soil was the second.[Conclusions]When applying lime,green fertilizer and alkaline bio-organic fertilizer should be applied to achieve sustainable improvement of strongly acidic soil.展开更多
To make use of the pelagic clay as polymer filling,the properties of clay sediments from the ocean investigation zone of China in the East Pacific were studied by the SSA,XRF,ICP/MAS,FTIR,XRD,SEM,DTA/TG and granularit...To make use of the pelagic clay as polymer filling,the properties of clay sediments from the ocean investigation zone of China in the East Pacific were studied by the SSA,XRF,ICP/MAS,FTIR,XRD,SEM,DTA/TG and granularity distributing etc.,and experiments were settled to improve the whiteness and activation of the clay based on these data.Compared with land clay,pelagic clay holds many particular features,such as fine particles and incompact accumulation,worse crystallization and more defects,high activity,complex mineral and chemical components,and low whiteness etc.Processing the purified pelagic clay with acids and zinc,then baked it at different temperatures,the whiteness of clay can be increased from 23.8% to 73.1%,and the optimized conditions is:consistency of vitriol 25%,ratio of clay to water 4∶1,reaction time 4h,reaction temperature 90℃,dosage of zinc 2.0 g/L,and baking temperature 700℃.And the SSA of whited clay is increased too.Using the dry milling method to modify the pelagic clay with organic reagents,the optimized technique is KH550,concentration 1.5%,reaction time 20 min.XRD,FTIR and SEM testing indicate that the mechanism of organic activation was mainly surface absorbing and chemical combination secondly.展开更多
Changes of word meanings in English are often achieved by the processes of generalization/specialization and pejoration/amelioration.By generalization or specialization,the literal meanings of a word are broadened or ...Changes of word meanings in English are often achieved by the processes of generalization/specialization and pejoration/amelioration.By generalization or specialization,the literal meanings of a word are broadened or narrowed.While by pejoration or amelioration,the associations of a word go downhill or rise.Trough supplying certain examples,a brief picture about meaning changes of words in English is drawn.展开更多
Oral administration of arsenic trioxide(3 and 6 mg/kg body weight/d) for 30 d caused, as compared with vehicle control, dose dependent significant reductions in body weight, absolute weight, protein, glycogen, as wel...Oral administration of arsenic trioxide(3 and 6 mg/kg body weight/d) for 30 d caused, as compared with vehicle control, dose dependent significant reductions in body weight, absolute weight, protein, glycogen, as well as, total, dehydro and reduced ascorbic acid contents both in the liver and kidney of arsenic treated mice. Succinic dehydrogenase(SDH) and phosphorylase only in the liver activities were significantly reduced in a dose dependent manner. Acid phosphatase activity was significantly decreased in the liver of low dose arsenic treated animals; however, significant rise in its activity was observed in high dose group. As compared with vehicle control, treatment also caused significant dose dependent reductions in SDH, alkaline phosphatase and acid phosphatase activities in the kidney of mice. Vitamin E cotreatment as well as, 30 d withdrawal of arsenic trioxide treatment with or without vitamin E caused significant amelioration in arsenic induced toxicity in mice. Administration of vitamin E during withdrawal of treatment also caused significant amelioration as compared from only withdrawal of the treatment. It is concluded that vitamin E ameliorates arsenic induced toxicities in the liver and kidney of mice.展开更多
The wettability of coarse-grained soils has been studied previously.However,soil drying in arid regions due to limited precipitation or irrigation has resulted in soil water repellency to some extent in fine-grained s...The wettability of coarse-grained soils has been studied previously.However,soil drying in arid regions due to limited precipitation or irrigation has resulted in soil water repellency to some extent in fine-grained soils.In this study,laboratory experiments were conducted to investigate the effects of plane(Platanus orientalis L.)leaf biochar with fine(<0.1 mm)and coarse grains(0.1-0.5 mm)on the wettability of a silty clay soil irrigated with saline and non-saline water.Eleven rates of each biochar,ranging from 0 to 10%with 1%intervals,were investigated along with five ionic strengths of water,including 0,0.2,0.4,0.6,and 0.8 mol L^(-1),prepared using sodium and calcium chloride,which are two dominant salts in arid regions.The results showed that application of 5%-10%fine-grained biochar changed the soil hydrophobicity class from strongly to slightly water-repellent,while only 4%coarse-grained biochar was sufficient for the same change in soil wettability.Furthermore,the use of 10%coarse-grained biochar made the soil hydrophilic.The positive effect of plane leaf biochar on soil water repellency reduction was limited by water salinity.The sodium chloride solution was more effective in decreasing the soil wettability than calcium chloride solution and increased the demand for biochar for soil water repellency reduction.In conclusion,plane leaf biochar could be beneficial in managing the hydrophobicity of fine-grained soils.However,water quality as well as biochar particle size determined the quantity of biochar required for improving soil wettability.展开更多
Salt-affected soils extensively distribute on the earth.Although the causes are various,generally speaking salinization occurrence results from the accumulation of free salts to an extent that causes degradation of ve...Salt-affected soils extensively distribute on the earth.Although the causes are various,generally speaking salinization occurrence results from the accumulation of free salts to an extent that causes degradation of vegetation and soils.Besides,irrational human practices have increased soil salinity by allowing excess recharging of groundwater to change the natural balance of the water cycle in the landscape. This reduces the suitability to plant growth and increases the potential for other forms of land ...展开更多
An epidemic vaccination model with multiple stages of infection is presented and analyzed. The model allows infected individuals to move from advanced stages of infection back to less advanced stages of infection. A t...An epidemic vaccination model with multiple stages of infection is presented and analyzed. The model allows infected individuals to move from advanced stages of infection back to less advanced stages of infection. A threshold parameter which determines the local stability of the disease-free equilibrium is found. The existence and stability of endemic equilibrium for 2-dimensional phase space are analyzed. At the same time, we put forward an optimal vaccine efficacy.展开更多
OBJECTIVE:To determine the therapeutic effects of the Zhuangyao Jianshen pill(壮腰健肾丸,ZYJSP)against benign prostatic hyperplasia(BPH)and investigate the underlying mechanism.METHODS:Forty-eight male Sprague-Dawley ...OBJECTIVE:To determine the therapeutic effects of the Zhuangyao Jianshen pill(壮腰健肾丸,ZYJSP)against benign prostatic hyperplasia(BPH)and investigate the underlying mechanism.METHODS:Forty-eight male Sprague-Dawley rats were randomly divided into six groups:Control group,BPH model group,finasteride-treated group,ZYJSP low,medium and high dose groups.Except for the control group,40 rats were castrated and injected with testosterone propionate(TP)for 28 consecutive day to induce BPH.Meanwhile,the corresponding drugs were administered by gavage.The prostate wet weight,prostate index(PI),and the histopathological changes in the prostate were measured as the basis for examining the efficacy of ZYJSP against BPH.Levels of the serum sex hormones,oxidative stress markers,inflammatory markers,renal function markers,growth factors,and Cyclin D1 expression in prostate were measured to characterize the therapeutic mechanism of ZYJSP against BPH.RESULTS:ZYJSP administration significantly reduced prostate wet weight and PI and ameliorated histological changes of the prostate in TP-treated castrated rats.TP markedly increased the levels of creatinine,blood urea nitrogen and growth factors in the serum as well as the expression of the Cyclin D1 in the prostate.Most of these markers were significantly decreased by ZYJSP.ZYJSP significantly restored the dysregulation of testosterone,estradiol,and dihydrotestosterone caused by TP.Furthermore,ZYJSP relieved TP-induced prostate injury and exhibited both anti-inflammatory and anti-oxidant activity by decreasing interleukin-6,interleukin-8,and malondialdehyde levels and increasing the activity of superoxide dismutase in the serum.CONCLUSION:These findings indicate that ZYJSP can effectively ameliorate BPH induced by TP in castrated rats,and the underlying mechanism might be related to regulating sex hormone balance,reducing oxidative stress,and inhibiting the inflammatory response.展开更多
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ...We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.展开更多
It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial...It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial byproducts, i.e., coal fly ash (CFA), alkaline slag (AS), red mud (RM) and phosphogypsum (PG) in correcting acidity and aluminum (Al) toxicity of soils under tea plantation using an indoor incubation experiment. Results indicated that CFA, AS and RM increased soil pH, while PG decreased the pHs of an Ultisol and an Alfisol. The increment of soil pH followed the order of RM 〉 AS 〉 CFA. All the industrial byproducts invariably decreased exchangeable Al and hence increased exchangeable Ca, Mg, K and Na and effective cation exchange capacity. RM, AS and lime decreased total soluble Al, exchangeable Al and organically bound Al. Formation and retention of hydroxyl-Al polymers were the principal mechanism through which Al phytotoxicity was alleviated by application of these amendments. In addition, the heavy metal contents in the four industrial byproducts constituted a limited environmental hazard in a short time at the rates normally used in agriculture. Therefore, the short-term use of the byproducts, especially AS and RM, as amendments for soil acidity and AI toxicity in acid soils may be a potential alternative to the traditional use of mined gypsum and lime.展开更多
Large areas of Artemisia ordosica Krasch., Caragana korshinskii Kom., and Caragana intermedia Kuang and H. C. Fu plantations were established on moving sand dunes in the Gonghe Basin (northeastern Tibetan Plateau) f...Large areas of Artemisia ordosica Krasch., Caragana korshinskii Kom., and Caragana intermedia Kuang and H. C. Fu plantations were established on moving sand dunes in the Gonghe Basin (northeastern Tibetan Plateau) for vegetation restoration. Elevating our understanding of the changes in soil characteristics after the establishment of different plantation types can be useful in the context of combating deserdfication. To assess the effects of these plantation types on the restoration of sandy land, we measured soil physical-chemical properties at four depths (0-5, 5-10, 10-20, and 20-50 cm) in each of the three plantation types and also in non-vegetated moving sand dunes (as control sites). Generally, the establishment of A. ordosica, C korshinskii and C intermedia plantations on sand dunes has greatly ameliorated soil quality in the Gonghe Basin. Specifically, relative to the moving sand dunes, shrub plantation has increased the silt and clay contents, total porosity and water holding capacity, soil organic matter, total nitrogen, total phosphorus and total potassium contents. The calculated soil quality index suggested that in the Gonghe Basin, C. intermedia is the best choice for soil amelioration. In all the three plantation types, soil amelioration mainly occurred in the shallow depths.展开更多
Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effec...Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effects of such integration in saline-alkali soils.A soil column experiment was conducted to investigate the effects of a straw layer plus FGD gypsum on soil salinity and alkalinity.We placed a straw layer(5 cm thick)at a depth of 30 cm and mixed FGD gypsum into the 0–20 cm soil layer at application rates of 7.5,15.0,22.5,and 30.0 t ha^-1,with no straw layer and FGD gypsum as a control(CK).The soil water content in the 0–30 cm soil layer was significantly higher(>7.8%)in the treated soil profiles after infiltration than in the CK,but decreased after evaporation.The electrical conductivity(EC)of the 10–30 cm soil layer was 230.2%and 104.9%higher in the treated soil profiles than in the CK after infiltration and evaporation,respectively,and increased with increasing rates of FGD gypsum application,with Ca^2+and SO4^2-being the main dissolved salts.Compared to those in the CK,the concentrations of Na^+,Cl^-,and HCO3-decreased in the treated soil profiles at depths above 55 cm,but the other soluble ions increased,after infiltration.A similar trend occurred after evaporation for all soluble ions except for HCO3-.The p H and exchangeable sodium percentage in the treated soil profiles were significantly lower than those in the CK over the entire profile,and decreased with increasing FGD gypsum application rates.Therefore,the incorporation of a straw layer plus FGD gypsum can reduce salinity and alkalinity,but the quantity of FGD gypsum should be controlled in saline-alkali soils.展开更多
Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In...Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In order to improve the liming potential of RC, alkaline slag (AS), the by-product of recovery of sodium carbonate, was incorporated. Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated. Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation, but not necessarily for soil pH adjustment. The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially, but then soil pH decreased due to nitrifications. Various degrees of nitrification were correlated with the interaction of different Ca levels, pH and N contents. When RC was applied at low levels, high Ca levels from AS repressed soil nitrification, resulting in smaller pH fluctuations. In contrast, high AS stimulated soil nitrification, when RC was applied at high levels, and resulted in a large pH decrease. Based on the optimum pH for tea production and quality, high ratios of AS to RC were indicated for soil acidity amelioration, and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC, respectively. Further, field studies are needed to investigate the variables of combined amendments.展开更多
BACKGROUND A recent investigation showed that the prevalence of type 2 diabetes mellitus(T2DM)is 12.8%among individuals of Han ethnicity.Gut microbiota has been reported to play a central role in T2DM.Goto-Kakizaki(GK...BACKGROUND A recent investigation showed that the prevalence of type 2 diabetes mellitus(T2DM)is 12.8%among individuals of Han ethnicity.Gut microbiota has been reported to play a central role in T2DM.Goto-Kakizaki(GK)rats show differences in gut microbiota compared to non-diabetic rats.Previous studies have indicated that berberine could be successfully used to manage T2DM.We sought to understand its hypoglycaemic effect and role in the regulation of the gut microbiota.AIM To determine whether berberine can regulate glucose metabolism in GK rats via the gut microbiota.METHODS GK rats were acclimatized for 1 wk.The GK rats were randomly divided into three groups and administered saline(Mo),metformin(Me),or berberine(Be).The observation time was 8 wk,and weight,fasting blood glucose(FBG),insulin,and glucagon-like peptide-1(GLP-1)were measured.Pancreatic tissue was observed for pathological changes.Additionally,we sequenced the 16S rRNA V3-V4 region of the gut microbiota and analysed the structure.RESULTS Compared with the Mo group,the Me and Be groups displayed significant differences in FBG(P<0.01)and GLP-1(P<0.05).A significant decrease in weight and homeostatic model assessment-insulin resistance was noted in the Be group compared with those in the Me group(P<0.01).The pancreatic islets of the Me-and Be-treated rats showed improvement in number,shape,and necrosis compared with those of Mo-treated rats.A total of 580 operational taxonomic units were obtained in the three groups.Compared to the Mo group,the Me and Be groups showed a shift in the structure of the gut microbiota.Correlation analysis indicated that FBG was strongly positively correlated with Clostridia_UCG-014(P<0.01)and negatively correlated with Allobaculum(P<0.01).Body weight showed a positive correlation with Desulfovibrionaceae(P<0.01)and a negative correlation with Akkermansia(P<0.01).Importantly,our results demonstrated that Me and Be could significantly decrease Bacteroidetes(P<0.01)and the Bacteroidetes/Firmicutes ratio(P<0.01).Furthermore,Muribaculaceae(P<0.01;P<0.05)was significantly decreased in the Me and Be groups,and Allobaculum(P<0.01)was significantly increased.CONCLUSION Berberine has a substantial effect in improving metabolic parameters and modulating the gut microbiota composition in T2DM rats.展开更多
文摘Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.
基金This research is a part of the German-Chinese Project of Agroforestry in Coastal Region supported by the BMBF
文摘Some environmental problems, especially soil salinity hinder the regional sustainable development of eastern China coastal region. Salinity mainly comes from tide weave, seawater flooding and seawater intrusion. Over exploitation of groundwater, which is the result of unfitful land use systems, leads to seawater intrusion and salt concentration increase. Agroforestry systems can enrich soil fertility and prevent soil salinization, furthermore help maintain biodiversity and enhance productivity. For the intergrated multiple ecosystems the most critical issue is to select optimum tree species and rationally arrange these plants. The basics of this multiple ecosystem is that different plants will occupy variable ecological niches within an area, both in space and in soil depth. Shelterbelts and trees intercropping with agricultural crops are major types of the multiple ecosystem. Shelterbelts can reduce wind speed and consequently lessen evaporation and erosion of the soil, increase pasture growth by up to 60% on exposed sites, increase crop yields by up to 25%. Besides intercropping with jujube, other agroforestry multiple ecosystem such as forestry plus agriculture, forestry plus agriculture plus fishery, and forestry plus animal husbandry are the most appropriate ways to utilise land resource in this region.
基金supported by the Fund for 863 Program(2013AA102904)the central university basic research project(2009KD01).
文摘To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activities were analyzed.The results showed that:the soil bulk density of surface soil decreased and soil porosity and field capacity increased after afforestation with seabuckthorn.The plant was found to effectively reduce the soil pH,increase the soil conductivity,soil organic matters and available nutrients.Soil microorganism quantity,soil enzyme activities were both higher in 0-20 cm layer than in 20-40 cm layer.With the increase years of remediation with seabuckthorn,the quantity of soil microorganism and enzyme activities were increasing to a higher level 5 to 8 years later.Our study indicates that seabuckthorn can effectively improve soil physical and chemical properties,increase the quantity of soil microorganisms and enzyme activities,which is of great significance for the ecosystem restoration in mining areas.
文摘A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems (pas- toral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloafusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combi- nation with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora (77.20 t·ha-1) and A. nilotica (63.20 t·ha-1) planted under silvipastoral system were significantly higher than the sole plantation of (64.50 t·ha-1 and 52.75 t·ha-1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reduc- ing soil pH, displacing Na+ from the exchange complex, increasing or- ganic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation ofhighly alkali soils.
文摘Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz and increase of crop yields. In detail it may adjust pH, depress alkalinity, reduce bulk density and compactness and increase water permeability and retention ability of the soil. Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil, Water and air.
文摘A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly
基金Supported by Science and Technology Project of Hunan Tobacco Monopoly Bureau(18-21Aa04).
文摘[Objectives]This study was conducted to clarify the improvement effects of different soil amelioration materials such as lime,green manure and bio-organic fertilizer on acidic tobacco-planting soil.[Methods]The dynamic changes of soil pH,soil nutrients and enzyme activity were studied by applying lime,lime+green fertilizer,and lime+green fertilizer+biological organic fertilizer.[Results]①After the application of amelioration materials,the soil pH and available phosphorus content of tobacco-growing soil showed a stepwise change of first increasing and then decreasing,and became stable at 60 d after tobacco transplanting;the soil organic matter,alkali-hydrolyzable nitrogen and available potassium content showed a gradual change trend of"high-low-high";and the soil invertase and urease activity showed a gradual change trend of"low-high-low".②To 90 d after tobacco transplanting,the application of amelioration materials increased soil pH by 1.29-1.62 units,and increased organic matter content by 15.21%-20.86%,alkali-hydrolyzable nitrogen content by 6.83%-18.17%,available phosphorus content by 54.15%-217.85%,rapidly available potassium content by 11.42%-30.86%,soil invertase activity by 70.09%-18.93%,and soil urease activity by 64.07%-130.47%.③The combination of lime+green manure+alkaline microbial organic fertilizer had the best effect on the improvement of acidic tobacco-growing soil,and the effect of lime+green manure+acid microbial organic fertilizer on acidic soil was the second.[Conclusions]When applying lime,green fertilizer and alkaline bio-organic fertilizer should be applied to achieve sustainable improvement of strongly acidic soil.
基金Supported by Ocean Association Fund of China (No DY105-01-02)Undergraduate Innovation Found of Jilin University (No 601044)
文摘To make use of the pelagic clay as polymer filling,the properties of clay sediments from the ocean investigation zone of China in the East Pacific were studied by the SSA,XRF,ICP/MAS,FTIR,XRD,SEM,DTA/TG and granularity distributing etc.,and experiments were settled to improve the whiteness and activation of the clay based on these data.Compared with land clay,pelagic clay holds many particular features,such as fine particles and incompact accumulation,worse crystallization and more defects,high activity,complex mineral and chemical components,and low whiteness etc.Processing the purified pelagic clay with acids and zinc,then baked it at different temperatures,the whiteness of clay can be increased from 23.8% to 73.1%,and the optimized conditions is:consistency of vitriol 25%,ratio of clay to water 4∶1,reaction time 4h,reaction temperature 90℃,dosage of zinc 2.0 g/L,and baking temperature 700℃.And the SSA of whited clay is increased too.Using the dry milling method to modify the pelagic clay with organic reagents,the optimized technique is KH550,concentration 1.5%,reaction time 20 min.XRD,FTIR and SEM testing indicate that the mechanism of organic activation was mainly surface absorbing and chemical combination secondly.
文摘Changes of word meanings in English are often achieved by the processes of generalization/specialization and pejoration/amelioration.By generalization or specialization,the literal meanings of a word are broadened or narrowed.While by pejoration or amelioration,the associations of a word go downhill or rise.Trough supplying certain examples,a brief picture about meaning changes of words in English is drawn.
文摘Oral administration of arsenic trioxide(3 and 6 mg/kg body weight/d) for 30 d caused, as compared with vehicle control, dose dependent significant reductions in body weight, absolute weight, protein, glycogen, as well as, total, dehydro and reduced ascorbic acid contents both in the liver and kidney of arsenic treated mice. Succinic dehydrogenase(SDH) and phosphorylase only in the liver activities were significantly reduced in a dose dependent manner. Acid phosphatase activity was significantly decreased in the liver of low dose arsenic treated animals; however, significant rise in its activity was observed in high dose group. As compared with vehicle control, treatment also caused significant dose dependent reductions in SDH, alkaline phosphatase and acid phosphatase activities in the kidney of mice. Vitamin E cotreatment as well as, 30 d withdrawal of arsenic trioxide treatment with or without vitamin E caused significant amelioration in arsenic induced toxicity in mice. Administration of vitamin E during withdrawal of treatment also caused significant amelioration as compared from only withdrawal of the treatment. It is concluded that vitamin E ameliorates arsenic induced toxicities in the liver and kidney of mice.
文摘The wettability of coarse-grained soils has been studied previously.However,soil drying in arid regions due to limited precipitation or irrigation has resulted in soil water repellency to some extent in fine-grained soils.In this study,laboratory experiments were conducted to investigate the effects of plane(Platanus orientalis L.)leaf biochar with fine(<0.1 mm)and coarse grains(0.1-0.5 mm)on the wettability of a silty clay soil irrigated with saline and non-saline water.Eleven rates of each biochar,ranging from 0 to 10%with 1%intervals,were investigated along with five ionic strengths of water,including 0,0.2,0.4,0.6,and 0.8 mol L^(-1),prepared using sodium and calcium chloride,which are two dominant salts in arid regions.The results showed that application of 5%-10%fine-grained biochar changed the soil hydrophobicity class from strongly to slightly water-repellent,while only 4%coarse-grained biochar was sufficient for the same change in soil wettability.Furthermore,the use of 10%coarse-grained biochar made the soil hydrophilic.The positive effect of plane leaf biochar on soil water repellency reduction was limited by water salinity.The sodium chloride solution was more effective in decreasing the soil wettability than calcium chloride solution and increased the demand for biochar for soil water repellency reduction.In conclusion,plane leaf biochar could be beneficial in managing the hydrophobicity of fine-grained soils.However,water quality as well as biochar particle size determined the quantity of biochar required for improving soil wettability.
基金the Scientific & Technological Project of Zhejiang Forestry Department(No.07A02 and No.08A02)the National Eleventh Five-year Key Scientific & Technological Project(No.2006BAD03A15)
文摘Salt-affected soils extensively distribute on the earth.Although the causes are various,generally speaking salinization occurrence results from the accumulation of free salts to an extent that causes degradation of vegetation and soils.Besides,irrational human practices have increased soil salinity by allowing excess recharging of groundwater to change the natural balance of the water cycle in the landscape. This reduces the suitability to plant growth and increases the potential for other forms of land ...
基金supported by the Young College Teachers Supporting Program of Anhui Province(2005jq1138)
文摘An epidemic vaccination model with multiple stages of infection is presented and analyzed. The model allows infected individuals to move from advanced stages of infection back to less advanced stages of infection. A threshold parameter which determines the local stability of the disease-free equilibrium is found. The existence and stability of endemic equilibrium for 2-dimensional phase space are analyzed. At the same time, we put forward an optimal vaccine efficacy.
文摘OBJECTIVE:To determine the therapeutic effects of the Zhuangyao Jianshen pill(壮腰健肾丸,ZYJSP)against benign prostatic hyperplasia(BPH)and investigate the underlying mechanism.METHODS:Forty-eight male Sprague-Dawley rats were randomly divided into six groups:Control group,BPH model group,finasteride-treated group,ZYJSP low,medium and high dose groups.Except for the control group,40 rats were castrated and injected with testosterone propionate(TP)for 28 consecutive day to induce BPH.Meanwhile,the corresponding drugs were administered by gavage.The prostate wet weight,prostate index(PI),and the histopathological changes in the prostate were measured as the basis for examining the efficacy of ZYJSP against BPH.Levels of the serum sex hormones,oxidative stress markers,inflammatory markers,renal function markers,growth factors,and Cyclin D1 expression in prostate were measured to characterize the therapeutic mechanism of ZYJSP against BPH.RESULTS:ZYJSP administration significantly reduced prostate wet weight and PI and ameliorated histological changes of the prostate in TP-treated castrated rats.TP markedly increased the levels of creatinine,blood urea nitrogen and growth factors in the serum as well as the expression of the Cyclin D1 in the prostate.Most of these markers were significantly decreased by ZYJSP.ZYJSP significantly restored the dysregulation of testosterone,estradiol,and dihydrotestosterone caused by TP.Furthermore,ZYJSP relieved TP-induced prostate injury and exhibited both anti-inflammatory and anti-oxidant activity by decreasing interleukin-6,interleukin-8,and malondialdehyde levels and increasing the activity of superoxide dismutase in the serum.CONCLUSION:These findings indicate that ZYJSP can effectively ameliorate BPH induced by TP in castrated rats,and the underlying mechanism might be related to regulating sex hormone balance,reducing oxidative stress,and inhibiting the inflammatory response.
文摘We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.
基金Supported by the International Foundation of Science(No.C/4073-1)the National"Eleventh Five Years Plan"Key Project on Science and Technology of China(Nos.2006BAD05B02 and 2009BADC6B02)
文摘It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial byproducts, i.e., coal fly ash (CFA), alkaline slag (AS), red mud (RM) and phosphogypsum (PG) in correcting acidity and aluminum (Al) toxicity of soils under tea plantation using an indoor incubation experiment. Results indicated that CFA, AS and RM increased soil pH, while PG decreased the pHs of an Ultisol and an Alfisol. The increment of soil pH followed the order of RM 〉 AS 〉 CFA. All the industrial byproducts invariably decreased exchangeable Al and hence increased exchangeable Ca, Mg, K and Na and effective cation exchange capacity. RM, AS and lime decreased total soluble Al, exchangeable Al and organically bound Al. Formation and retention of hydroxyl-Al polymers were the principal mechanism through which Al phytotoxicity was alleviated by application of these amendments. In addition, the heavy metal contents in the four industrial byproducts constituted a limited environmental hazard in a short time at the rates normally used in agriculture. Therefore, the short-term use of the byproducts, especially AS and RM, as amendments for soil acidity and AI toxicity in acid soils may be a potential alternative to the traditional use of mined gypsum and lime.
基金supported by the Forestry Public Benefit Scientific Research Special Project of China(201504420)the National Science&Technology Pillar Program during the 12th Five-year Plan Period(2012BAD16B0102)
文摘Large areas of Artemisia ordosica Krasch., Caragana korshinskii Kom., and Caragana intermedia Kuang and H. C. Fu plantations were established on moving sand dunes in the Gonghe Basin (northeastern Tibetan Plateau) for vegetation restoration. Elevating our understanding of the changes in soil characteristics after the establishment of different plantation types can be useful in the context of combating deserdfication. To assess the effects of these plantation types on the restoration of sandy land, we measured soil physical-chemical properties at four depths (0-5, 5-10, 10-20, and 20-50 cm) in each of the three plantation types and also in non-vegetated moving sand dunes (as control sites). Generally, the establishment of A. ordosica, C korshinskii and C intermedia plantations on sand dunes has greatly ameliorated soil quality in the Gonghe Basin. Specifically, relative to the moving sand dunes, shrub plantation has increased the silt and clay contents, total porosity and water holding capacity, soil organic matter, total nitrogen, total phosphorus and total potassium contents. The calculated soil quality index suggested that in the Gonghe Basin, C. intermedia is the best choice for soil amelioration. In all the three plantation types, soil amelioration mainly occurred in the shallow depths.
基金supported by the Chinese Postdoctoral Science Foundation(No.2015M580110)the National Key Research and Development Program of China(No.2016YFC0501306)。
文摘Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effects of such integration in saline-alkali soils.A soil column experiment was conducted to investigate the effects of a straw layer plus FGD gypsum on soil salinity and alkalinity.We placed a straw layer(5 cm thick)at a depth of 30 cm and mixed FGD gypsum into the 0–20 cm soil layer at application rates of 7.5,15.0,22.5,and 30.0 t ha^-1,with no straw layer and FGD gypsum as a control(CK).The soil water content in the 0–30 cm soil layer was significantly higher(>7.8%)in the treated soil profiles after infiltration than in the CK,but decreased after evaporation.The electrical conductivity(EC)of the 10–30 cm soil layer was 230.2%and 104.9%higher in the treated soil profiles than in the CK after infiltration and evaporation,respectively,and increased with increasing rates of FGD gypsum application,with Ca^2+and SO4^2-being the main dissolved salts.Compared to those in the CK,the concentrations of Na^+,Cl^-,and HCO3-decreased in the treated soil profiles at depths above 55 cm,but the other soluble ions increased,after infiltration.A similar trend occurred after evaporation for all soluble ions except for HCO3-.The p H and exchangeable sodium percentage in the treated soil profiles were significantly lower than those in the CK over the entire profile,and decreased with increasing FGD gypsum application rates.Therefore,the incorporation of a straw layer plus FGD gypsum can reduce salinity and alkalinity,but the quantity of FGD gypsum should be controlled in saline-alkali soils.
基金Supported by the National Key Technology R&D Program of China(No.2009BADC6B02)the National Environmental Protection Public Benefit Research Foundation of China(No.2013467036)the National Natural Science Foundation of China(Nos.41030531 and 40701078)
文摘Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In order to improve the liming potential of RC, alkaline slag (AS), the by-product of recovery of sodium carbonate, was incorporated. Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated. Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation, but not necessarily for soil pH adjustment. The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially, but then soil pH decreased due to nitrifications. Various degrees of nitrification were correlated with the interaction of different Ca levels, pH and N contents. When RC was applied at low levels, high Ca levels from AS repressed soil nitrification, resulting in smaller pH fluctuations. In contrast, high AS stimulated soil nitrification, when RC was applied at high levels, and resulted in a large pH decrease. Based on the optimum pH for tea production and quality, high ratios of AS to RC were indicated for soil acidity amelioration, and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC, respectively. Further, field studies are needed to investigate the variables of combined amendments.
基金National Natural Science Foundation of China,No.81603574 and No.81774286National Key Research and Development Program,No.2018YFC1704202 and No.2020YFE0201800+1 种基金University Scientific Research Projects of Anhui,No.KJ2020A0401 and No.KJ2019A0442Province Science Foundation of Anhui,No.1708085QH213.
文摘BACKGROUND A recent investigation showed that the prevalence of type 2 diabetes mellitus(T2DM)is 12.8%among individuals of Han ethnicity.Gut microbiota has been reported to play a central role in T2DM.Goto-Kakizaki(GK)rats show differences in gut microbiota compared to non-diabetic rats.Previous studies have indicated that berberine could be successfully used to manage T2DM.We sought to understand its hypoglycaemic effect and role in the regulation of the gut microbiota.AIM To determine whether berberine can regulate glucose metabolism in GK rats via the gut microbiota.METHODS GK rats were acclimatized for 1 wk.The GK rats were randomly divided into three groups and administered saline(Mo),metformin(Me),or berberine(Be).The observation time was 8 wk,and weight,fasting blood glucose(FBG),insulin,and glucagon-like peptide-1(GLP-1)were measured.Pancreatic tissue was observed for pathological changes.Additionally,we sequenced the 16S rRNA V3-V4 region of the gut microbiota and analysed the structure.RESULTS Compared with the Mo group,the Me and Be groups displayed significant differences in FBG(P<0.01)and GLP-1(P<0.05).A significant decrease in weight and homeostatic model assessment-insulin resistance was noted in the Be group compared with those in the Me group(P<0.01).The pancreatic islets of the Me-and Be-treated rats showed improvement in number,shape,and necrosis compared with those of Mo-treated rats.A total of 580 operational taxonomic units were obtained in the three groups.Compared to the Mo group,the Me and Be groups showed a shift in the structure of the gut microbiota.Correlation analysis indicated that FBG was strongly positively correlated with Clostridia_UCG-014(P<0.01)and negatively correlated with Allobaculum(P<0.01).Body weight showed a positive correlation with Desulfovibrionaceae(P<0.01)and a negative correlation with Akkermansia(P<0.01).Importantly,our results demonstrated that Me and Be could significantly decrease Bacteroidetes(P<0.01)and the Bacteroidetes/Firmicutes ratio(P<0.01).Furthermore,Muribaculaceae(P<0.01;P<0.05)was significantly decreased in the Me and Be groups,and Allobaculum(P<0.01)was significantly increased.CONCLUSION Berberine has a substantial effect in improving metabolic parameters and modulating the gut microbiota composition in T2DM rats.