期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Reconfigurable organic ambipolar optoelectronic synaptic transistor for information security access 被引量:1
1
作者 Xinqi Ma Wenbin Zhang +11 位作者 Qi Zheng Wenbiao Niu Zherui Zhao Kui Zhou Meng Zhang Shuangmei Xue Liangchao Guo Yan Yan Guanglong Ding Suting Han Vellaisamy A.L.Roy Ye Zhou 《Journal of Semiconductors》 2025年第2期133-142,共10页
In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu... In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems. 展开更多
关键词 RECONFIGURABLE ambipolar OPTOELECTRONIC synaptic transistor light assisted burn after reading
在线阅读 下载PDF
Integrating Electric Ambipolar Effect for High-Performance Zinc Bromide Batteries
2
作者 Wenda Li Hengyue Xu +9 位作者 Shanzhe Ke Hongyi Zhang Hao Chen Gaijuan Guo Xuanyi Xiong Shiyao Zhang Jianwei Fu Chengbin Jing Jiangong Cheng Shaohua Liu 《Nano-Micro Letters》 2025年第6期382-396,共15页
The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and subop... The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and suboptimal compatibility between the electrolytes and electrodes.Here,we unprecedentedly introduced an electric ambipolar effect for synergistic manipulation on Zn^(2+)ternary-hydrated eutectic electrolyte(ZTE)enabling high-performance Zn-Br_(2)batteries.The electric ambipolar effect motivates strong dipole interactions among hydrated perchlorates and bipolar ligands of L-carnitine(L-CN)and sulfamide,which reorganized primary cations solvation sheath in a manner of forming Zn[(L-CN)(SA)(H_(2)O)_(4)]^(2+)configuration and dynamically restricting desolvated H2O molecules,thus ensuring a broadened electrochemical window of 2.9 V coupled with high ionic conductivity.Noticeably,L-CN affords an electrostatic shielding effect and an in situ construction of organic-inorganic interphase,endowing oriented Zn anode plating/stripping reversibly for over 2400 h.Therefore,with the synergy of electro/nucleophilicity and exceptional compatibility,the ZTE electrolyte dynamically boosts the conversion redox of Zn-Br_(2)batteries in terms of high specific capacity and stable cycling performance.These findings open a window for designing electrolytes with synergetic chemical stability and compatibility toward advanced zinc-ion batteries. 展开更多
关键词 Electric ambipolar effect Hydrated eutectic electrolyte Electrostatic shielding Zinc bromide batteries
在线阅读 下载PDF
Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor
3
作者 Wentao Yu Long Zhao +5 位作者 Yanfei Gao Shiping Gao Yuekun Yang Chen Pan Shi-Jun Liang Bin Cheng 《Chinese Physics B》 2025年第1期189-193,共5页
Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision.These devices exhibit inherent switchable positive and negative ph... Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision.These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells.However,the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption,making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision.Here,we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe_(2)with an asymmetric gate electrode,achieving high photovoltaic responsivity.By adjusting the gate voltage and keeping bias voltage zero,we can dynamically realize reconfigurable n-–p and n-–n homojunction states,as well as gate-tunable photovoltaic response characteristics that range from positive to negative.The maximum photovoltaic responsivity of the electrically tunable WSe_(2)homojunction is approximately 0.4 A/W,which is significantly larger than the previously reported value~0.1 A/W in homojunction devices.In addition,the responsivity can be further enhanced to approximately 1.0 A/W when the n-–p photodiode operates in reverse bias mode,enabling highsensitivity detection of targets.Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology. 展开更多
关键词 reconfigurable homojunction in sensor computing ambipolar material
原文传递
THE MHD PROPERTIES OF AMBIPOLAR DIFFUSION AND QUASI - AMBIPOLAR DIFFUSION IN A PLASMA COLUMN
4
作者 Tang Fulin Zhuo Kecong Institute of Mechanics, Chinese Academy of Sciences 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第4期369-375,共7页
In the present paper, based on the conservation law of mass and momentum for ion and electron, the distribution of velocity, density of ions and electrons along radial direction are solved numerically. Furthermore, th... In the present paper, based on the conservation law of mass and momentum for ion and electron, the distribution of velocity, density of ions and electrons along radial direction are solved numerically. Furthermore, the comparison between MHD properties of ambipolar and qua- si- ambipolar diffusion is made. The numerical calculation is carried out for argon plasma. The results show that the ion density, ratio of ion and electron velocity at the cathode sheath boundary surface in- crease with the intensity of magnetic induction, meanwhile, the distance between sheaths decreases as well as the radial velocity of ion and electron at the anode sheath boundary. The ion density varies in accord with experiment qualitatively. All parameters mentioned above are not sensitive to magnetic field in ambipolar diffusion. 展开更多
关键词 plasma column ambipolar diffusion quasi ambipolar diffusion
在线阅读 下载PDF
Air-stable ambipolar organic field effect transistors with heterojunction of pentacene and N,N'-bis(4-trifluoromethylben-zyl) perylene-3,4,9,10-tetracarboxylic diimide 被引量:3
5
作者 李建丰 常文利 +1 位作者 欧谷平 张福甲 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期3002-3007,共6页
Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized... Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized.We select pentacene as a P-type material and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB) as a n-type material in the active layer of the OFETs.The field-effect transistor shows highly air-stable ambipolar characteristics with a field-effect hole mobility of 0.18 cm^2/(V·s) and field-effect electron mobility of 0.031 cm^2/(V·s).Furthermore the mobility only slightly decreases after being exposed to air and remains stable even for exposure to air for more than 60 days.The high electron affinity of PTCDI-TFB and the octadecyltrichlorosilane (OTS) self-assembly monolayer between the SiO2 gate dielectric and the organic active layer result in the observed air-stable characteristics of OFETs with high mobility.The results demonstrate that using the OTS as a modified gate insulator layer and using high electron affinity semiconductor materials are two effective methods to fabricate OFETs with air-stable characteristics and high mobility. 展开更多
关键词 organic heterojunction transistors ambipolar air-stable high electron affinity
原文传递
A hybrid ambipolar synaptic transistor emulating multiplexed neurotransmission for motivation control and experience-dependent learning 被引量:2
6
作者 Zhipeng Xu Yao Ni +5 位作者 Hong Han Huanhuan Wei Lu Liu Shuo Zhang Hao Huang Wentao Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期557-562,共6页
Artificial synapses with full synapse-like functionalities are of crucial importance for the implementation of neuromorphic computing and bioinspired intelligent systems. In particular, the development of artificial s... Artificial synapses with full synapse-like functionalities are of crucial importance for the implementation of neuromorphic computing and bioinspired intelligent systems. In particular, the development of artificial synapses with the capability to emulate multiplexed neural transmission is highly desirable, but remains challenging. In this work, we proposed a hybrid ambipolar synaptic transistor that combines two-dimensional(2D) molybdenum disulfide(Mo S_(2)) sheet and crystalline one-dimensional(1D) poly(3-hexylthiophene-2,5-diyl) polymer nanowires(P3HT NWs) as dual excitatory channels. Essential synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, synaptic potentiation and depression, and dynamic filtering were emulated using the synaptic transistor. Benefitting from the dual excitatory channels of the synaptic transistor, the device achieved a fast switch between short-term and long-term memory by altering the charge carriers in the dual channels, i.e., electrons and holes. This emulated the multiplexed neural transmission of different excitatory neurotransmitters, e.g., dopamine and noradrenaline. The plasticity-switchable artificial synapse(PSAS) simulates the task-learning process of individuals under different motivations and the impact of success or failure on task learning and memory, which promises the potential to enable complex functionalities in future neuromorphic intelligent electronics. 展开更多
关键词 Hybrid ambipolar Artificial synapse Dual excitatory channels Fast-switching plasticity Task-learning process
原文传递
Thiazole-Flanked Thiazoloisoindigo as a Monomer for Balanced Ambipolar Polymeric Field-effect Transistors 被引量:1
7
作者 Si-Yu Lv Qi-Yi Li +5 位作者 Bo-Wen Li Jie-Yu Wang You-Bing Mu Liang Li Jian Pei Xiao-Bo Wan 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第10期1131-1140,I0006,共11页
Electron-rich thiophene-flanked thiazoloisoindigo(Th-TzII)has been reported as a building block for ambipolar polymeric field-effect transistors however with preferable hole transport.Here,we report that by using an e... Electron-rich thiophene-flanked thiazoloisoindigo(Th-TzII)has been reported as a building block for ambipolar polymeric field-effect transistors however with preferable hole transport.Here,we report that by using an electron deficient thiazole as the flanked moiety,the corresponding thiazoloisoindigo(Tz-TzII)can still be synthesized,although in a more sinuous way.Theoretical calculation and experimental results demonstrate that Tz-TzII is more electron-deficient than Th-TzII,and the corresponding polymer P(TzII-Tz-T-Tz)exhibits high and balanced hole/electron mobility of 0.70/0.64 cm^(2)·V^(-1)·s^(-1). 展开更多
关键词 Thiazoloisoindigo ambipolar Polymeric field-effect transistors
原文传递
Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
8
作者 Hui-Fang Xu Jian Cui +1 位作者 Wen Sun Xin-Feng Han 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期571-578,共8页
A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effe... A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effects of the length of non-uniform gate-oxide layer and dual-material control-gate on the on-state, off-state, and ambipolar currents are investigated. In addition, radio-frequency performance is studied in terms of gain bandwidth product, cut-off frequency,transit time, and transconductance frequency product. Moreover, the length of non-uniform gate-oxide layer and dualmaterial control-gate are optimized to improve the on-off current ratio and radio-frequency performances as well as the suppression of ambipolar current. All results demonstrate that the proposed device not only suppresses ambipolar current but also improves radio-frequency performance compared with the conventional DMCG TFET, which makes the proposed device a better application prospect in the advanced integrated circuits. 展开更多
关键词 NON-UNIFORM gate-oxide layer ambipolar current RADIO-FREQUENCY PERFORMANCES TUNNEL fieldeffect transistor
原文传递
Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
9
作者 Ru Han Hai-Chao Zhang +1 位作者 Dang-Hui Wang Cui Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期656-662,共7页
A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics ... A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics such as current-voltage relationships, energy band diagrams, band-to-band tunneling(BTBT) rate and the magnitude of the electric field are investigated by using TCAD simulation. It is found that compared with conventional TTFET and TTFET with gate-drain overlap(GDO) structure, GDS-TTFET not only has the minimum ambipolar current but also can suppress the ambipolar current under a more extensive bias range. Furthermore, the analog/RF performances of GDS-TTFET are also investigated in terms of transconductance, gate-source capacitance, gate-drain capacitance, cutoff frequency, and gain bandwidth production. By inserting a low-κ spacer layer between the gate electrode and the gate dielectric, the GDS structure can effectively reduce parasitic capacitances between the gate and the source/drain, which leads to better performance in term of cutoff frequency and gain bandwidth production. Finally, the thickness of the gate dielectric spacer is optimized for better ambipolar current suppression and improved analog/RF performance. 展开更多
关键词 tunneling field effect TRANSISTOR T-SHAPED TUNNEL FIELD-EFFECT TRANSISTOR gate dielectric SPACER ambipolar current analog/RF performance
原文传递
Suppression of Ambipolar Conduction in Schottky Barrier Carbon Nanotube Field Effect Transistors:Modeling,Optimization Using Particle Swarm Intelligence,and Fabrication
10
作者 P.Reena Monica V.T.Sreedevi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期577-591,共15页
A mathematical model and experimental analysis of the impact of oxide thickness on the ambipolar conduction in Schottky Barrier Carbon Nanotubes(CNTs)Field Effect Transistor(SB CNTFETs)is presented.Suppression of ambi... A mathematical model and experimental analysis of the impact of oxide thickness on the ambipolar conduction in Schottky Barrier Carbon Nanotubes(CNTs)Field Effect Transistor(SB CNTFETs)is presented.Suppression of ambipolar conduction in SB CNTFETs is imperative in order to establish them as the future of IC technology.The ambipolar nature of SB CNTFETs leads to a great amount of leakage current.Employing a gate oxide dielectric of thickness,tox^50 nm suppresses the ambipolar behavior.In an SB CNTFET,it is the electric field at the source/drain contacts that control the conductance and the band bending length at the contacts is defined by tox.Therefore,tox is the prime parameter that influences the width of the Schottky barrier and the current in the subthreshold region.Due to the wide SB,there is a loss in on-current due to tunneling,but the current due to thermionic emission is increased by employing a high-κdielectric such as Zirconium dioxide(ZrO2).This work proposes an approach to suppress ambipolar behavior in SB CNTFETs without decreasing the on current.The thickness and dielectric constant of the gate oxide are optimized using the particle swarm optimization(PSO)algorithm to achieve suppression of ambipolar conduction without any loss in on-current.The proposed SB CNTFET was modeled using Verilog-A.Experimental demonstration of the suppression of ambipolar property is also presented.Two SB CNTFETs are fabricated using high-κdielectric such as ZrO2 with different thickness.A device with thin(~5 nm)gate oxide and another device with thick(~50 nm)gate oxide were fabricated.From the experimental results,it is observed that the device with the thin gate oxide exhibited ambipolar characteristics and the device with the thick gate oxide did not exhibit ambipolar characteristics.The increase in thickness,tox,ensures suppression of ambipolar behavior. 展开更多
关键词 ambipolar conduction Carbon NANOTUBES high-κgate oxide SCHOTTKY barrier
在线阅读 下载PDF
Sila-annulated terrylene diimides for balanced ambipolar transporting
11
作者 Kai Chen Ning Xue +4 位作者 Guogang Liu Yujian Liu Jiajing Feng Wei Jiang Zhaohui Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期311-314,共4页
The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost plana... The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost planar molecular configurations of both Si-TDIs and 2Si-TDIs.They exhibited intriguing optical properties including red-shifted absorption and near-infrared emission properties with excellent fluorescence quantum yields,as well as precisely controlled HOMO/LUMO energy levels by Si-heteroannulation.The single-crystal organic field-effect transistors based on 2Si-TDI 5a featuring long and branched alkyl chains demonstrated well-balanced ambipolar transporting properties with electron/hole mobilities of 0.10/0.18 cm2 V^(−1)s^(−1). 展开更多
关键词 Terrylene diimides Si-heteroannulation ambipolar transporting Single-crystal OFETs Organic electronics
原文传递
Toward High Performance Ambipolar Transport from Super-exchange Perspective:Theoretical Insights for IID-based Copolymers
12
作者 Wei-Na Zhang Xiao-Qian Wu +3 位作者 Guo Wang Yu-Ai Duan Hua Geng Yi Liao 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第4期355-364,共10页
High-performance ambipolar charge transport materials can reduce the manufacturing cost of OFET and OPV devices,and simplify circuit design and device structure.In order to obtain ambipolar donor-acceptor(D-A)polymer,... High-performance ambipolar charge transport materials can reduce the manufacturing cost of OFET and OPV devices,and simplify circuit design and device structure.In order to obtain ambipolar donor-acceptor(D-A)polymer,many efforts have been made through different donor and acceptor combination,halogenation or heteroatom substitution.However,the influencing factor for charge transport polarity is still much complicated.Based on intra-chain super-exchange mechanism for D-A polymer,we found that the energy alignment of donor and acceptor moiety has large impact on charge transport polarity.When the HOMO-LUMO(H-L)gap of the acceptor moiety is narrow,its HOMO/LUMO energy level both lie between the HOMO and LUMO of the donor moiety(sandwich-type energy alignment),and the corresponding D-A copolymers will be more likely ambipolar transport.And thus,take a narrow H-L gap thiazoleisoindigo(TzIID)acceptor as an example,we demonstrated that a series of TzIID based copolymers combined with wide H-L gap donor moieties can reveal ambipolar transport.We further predict several high performance ambipolar D-A copolymers(TzIID-TT etc.)with balanced electron and hole transport,whose effective mass(m_(e)^(*)=0.146 and m_(h)^(*)=0.128)is one of the smallest effective masses among ambipolar materials. 展开更多
关键词 D-A copolymer ambipolar Super-exchange mechanism Charge transport
原文传递
High-performance inverters based on ambipolar organic-inorganic heterojunction thin-film transistors
13
作者 Sheng Sun Yuzhi Li Shengdong Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期556-560,共5页
This work reports on the integration of organic and inorganic semiconductors as heterojunction active layers for high-performance ambipolar transistors and complementary metal-oxide-semiconductor(CMOS)-like inverters.... This work reports on the integration of organic and inorganic semiconductors as heterojunction active layers for high-performance ambipolar transistors and complementary metal-oxide-semiconductor(CMOS)-like inverters.Pentacene is employed as a p-type organic semiconductor for its stable electrical performance,while the solution-processed scandium(Sc)substituted indium oxide(ScInO)is employed as an n-type inorganic semiconductor.It is observed that by regulating the doping concentration of Sc,the electrical performance of the n-type semiconductor could be well controlled to obtain a balance with the electrical performance of the p-type semiconductor,which is vital for achieving high-performance inverters.When the doping concentration of Sc is 10 at.%,the CMOS-like logic inverters exhibit a voltage gain larger than 80 and a wide noise margin(53%of the theoretical value).The inverters also respond well to the input signal with frequency up to 500 Hz. 展开更多
关键词 solution-processed ScInO ambipolar TRANSISTOR inverter
原文传递
Band Alignment for Ambipolar-Doping of Sn_xZn_(1-x) Te Alloys
14
作者 袁小娟 刘建哲 +2 位作者 宁锋 张勇 唐黎明 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第4期723-726,共4页
Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We s... Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We show that the bowing coefficients and band gaps of these alloys are sensitively composition dependent.Due to wave functions full overlapping and delocalization of the Sn outermost p orbits and Zn s orbits,the coupling between these states is very strong,resulting in a significant downshift of conduction band edge with the increase of the Sn concentration x,While the valence band edge keeps almost unchanged compared with that of the binary ZnTe,thus improving the possibility for ambipolar-doping. 展开更多
关键词 SnxZn1-x Te bowing coefficient band offset ambipolar doping
原文传递
Recent progress on ambipolar 2D semiconductors in emergent reconfigurable electronics and optoelectronics
15
作者 赵月豪 孙浩然 +3 位作者 盛喆 张卫 周鹏 张增星 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期21-39,共19页
In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and sc... In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and scale-up of the integrated circuits(ICs)again in the foreseeable future.Exploring new materials,new-principle semiconductor devices and new computing architectures is becoming an urgent topic in this field.Ambipolar two-dimensional(2D)semiconductors,possessing excellent electrostatic field controllability and flexibly modulated major charge carriers,offer a possibility to construct reconfigurable devices and enable the ICs with new functions,showing great potential in computing capacity,energy efficiency,time delay and cost.This review focuses on the recent significant advancements in reconfigurable electronic and optoelectronic devices of ambipolar 2D semiconductors,and demonstrates their potential approach towards ICs,like reconfigurable circuits and neuromorphic chips.It is expected to help readers understand the device design principle of ambipolar 2D semiconductors,and push forward exploring more new-principle devices and new-architecture computing circuits,and even their product applications. 展开更多
关键词 two-dimensional material ambipolar semiconductor semiconductor device
原文传递
Ambipolar performance improvement of the C-shaped pocket TFET with dual metal gate and gate–drain underlap
16
作者 赵梓淼 陈子馨 +9 位作者 刘伟景 汤乃云 刘江南 刘先婷 李宣霖 潘信甫 唐敏 李清华 白伟 唐晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期700-707,共8页
Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap leng... Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap length on the DC characteristics and analog/RF performance of CSP-TFET devices,such as the on-state current(I_(on)),ambipolar current(I_(amb)),transconductance(g_(m)),cut-off frequency(f_(T))and gain–bandwidth product(GBP),are analyzed and compared in this work.Also,a combination of both the dual-metal gate and gate–drain underlap designs has been proposed for the C-shaped pocket dual metal underlap TFET(CSP-DMUN-TFET),which contains a C-shaped pocket area that significantly increases the on-state current of the device;this combination design substantially reduces the ambipolar current.The results show that the CSP-DMUN-TFET demonstrates an excellent performance,including high I_(on)(9.03×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),low SS_(avg)(~13 mV/dec),and low I_(amb)(2.15×10^(-17)A/μm).The CSP-DMUN-TFET has the capability to fully suppress ambipolar currents while maintaining high on-state currents,making it a potential replacement in the next generation of semiconductor devices. 展开更多
关键词 tunnel field effect transistor ambipolar current dual metal gate gate–drain underlap
原文传递
Ambipolar two-dimensional materials-based reconfigurable devices
17
作者 Ping He Pengxin Zhan +3 位作者 Yue Liu Lingxin Luo Xueping Cui Jian Zheng 《Science China Materials》 2025年第7期2161-2190,共30页
Scaling of complementary metal-oxide-semiconductor technology nodes using conventional semiconducting materials is slowing down.The development of semiconductor technology with new materials and new concepts has becom... Scaling of complementary metal-oxide-semiconductor technology nodes using conventional semiconducting materials is slowing down.The development of semiconductor technology with new materials and new concepts has become an important focus of scientific and industrial research.In recent years,emerging ambipolar two-dimensional(2D)materials-based reconfigurable devices have shown their potential in high-integration,multifunctional circuits and have begun to attract the attention of researchers.Here,we summarize the latest progress in the field concerning ambipolar 2D materials-based reconfigurable devices.Firstly,we introduce the basic properties and preparation methods of ambipolar 2D materials.Secondly,we discuss the latest applications of reconfigurable devices based on ambipolar 2D materials.Furthermore,we also introduce the current research status of ambipolar material devices in large-scale integration.Finally,we analyze the challenges faced during the development of ambipolar 2D materials-based reconfigurable devices and provide prospects for their future development. 展开更多
关键词 ambipolar two-dimensional materials electrostatically controllable reconfigurable field-effect diodes reconfigurable logic circuit neuromorphic devices
原文传递
Methylthio side-chain modified quinoidal benzo-[1,2-b:4,5-b']dithiophene derivatives for high-performance ambipolar organic field-effect transistors
18
作者 Li Chen Xiaoqi Luo +4 位作者 Nuoya Li Shaoqian Peng Qing Jiang Di Wu Jianlong Xia 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第10期3357-3365,共9页
Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized ... Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized to develop molecular semiconductors with high ambipolar mobility,designated QBDTS and QTBDTS.The theoretical calculation results reveal that QBDTS has a closed-shell structure while QTBDTS showed an open-shell structure with a biradical character(y0)of 0.46 and its magnetic properties were further investigated using electron paramagnetic resonance(EPR)and superconducting quantum interference device(SQUID)methods.The methyl side chains showed a large impact on the molecular orbital levels.The HOMO/LUMO levels of QBDTS and QTBDTS were measured to be-5.66/-4.56 and-5.27/-4.48 eV,respectively,which are favorable for ambipolar charge transport in OFETs.Importantly,the spin-coated QBDTS displayed hole and electron mobilities of 0.01 and 0.5 cm^(2)V^(-1)s^(-1)while QTBDTS showed a record high hole mobility of 1.8 cm^(2)V^(-1)s^(-1)and electron mobility of 0.3 cm^(2)V^(-1)s^(-1).Moreover,comparative studies of the thin film morphologies also manifested the beneficial influence of methyl side chains on film crystallinity and molecule orientation.These results strongly proved that methyl side chain engineering can be a simple but efficient strategy for modulating electronic properties and molecular stacking behaviors.This work also represents a big advancement for quinoidal molecular semiconductors in ambipolar OFET applications. 展开更多
关键词 side-chain modification quinoidal molecules ambipolar DIRADICALS organic field-effect transistors
原文传递
Mixed-dimensional stacked nanocomposite structures for a specific wavelength-selectable ambipolar photoresponse
19
作者 Young Jae Park Jaeho Shim +9 位作者 Joo Song Lee Kyu Seung Lee Ji-Yeon Kim Kang Bok Ko Sang-Youp Yim Seongjun Kim Hoon-Kyu Shin Donghee Park Yong Ju Yun Dong Ick Son 《Nano Research》 SCIE EI CSCD 2024年第6期5549-5558,共10页
Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to... Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties.Here,we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide(WSe_(2))/CdSeS QDs monolayer/molybdenum disulfide(MoS_(2))(2D/0D/2D).Specifically,it exhibits an ambipolar photoresponse characteristic,with a negative photoresponse observed in the 400-600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength.It resulted in the high negative responsivity of up to 52.22 mA·W^(−1)under 400 nm,which is 163 times higher than that of the photodetector without CdSeS QDs.We also demonstrated the negative photoresponse,which could be due to increased carrier collision probability and non-radiative recombination.Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation.Consequently,we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots.Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications. 展开更多
关键词 mixed-dimension quantum dot HETEROSTRUCTURE PHOTODETECTOR ambipolar photoresponse
原文传递
Indacenodithiophene-based single-component ambipolar polymer for high-performance vertical organic electrochemical transistors and inverters
20
作者 Yimin Sun Yu Lan +9 位作者 Meisi Li Wang Feng Miao Xie Yueping Lai Wei Li Yuhua Cheng Jianhua Chen Wei Huang Liang-Wen Feng Junqiao Ding 《Aggregate》 EI CAS 2024年第5期297-306,共10页
Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from ... Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from imbalanced p-type and n-type characteristics and/or stability issues.Herein,a novel single-component ambipolar polymer,namely,gIDT–BBT is reported based on indacenodithiophene(IDT)as the electron donor,benzobisthiadiazole(BBT)as the electron acceptor and oligo ethylene glycol(OEG)as the side chain.Benefitting from the extended backbone planarity and rigidity of IDT,pronounced electron-withdrawing capabil-ity of BBT,favored ionic transport from OEG together with vertical OECT device structure,a nearly balanced ambipolar OECT performance is achieved for gIDT–BBT,revealing a high transconductance of 155.05±1.58/27.28±0.92 mS,a high current on/off ratio>10^(6) and an excellent operational stability under both p-type and n-type operation conditions.With gIDT–BBT in hand,furthermore,vertically stacked complementary inverters are successfully fabricated to show a maximum voltage gain of 28 V V^(-1)(V_(IN)=0.9 V)and stable operation over 1000 switching cycles,and then used for efficient electrooculogram recording.This work provides a new approach for the development of ambipolar single-component organic mixed ionic–electronic conductors and establishes a foundation for the manufacture of high-performance ambipolar OECTs and associated complementary circuits. 展开更多
关键词 electrooculogram recording INVERTERS single-component ambipolar polymer vertical organic electro-chemical transistors
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部