In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu...In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.展开更多
The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and subop...The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and suboptimal compatibility between the electrolytes and electrodes.Here,we unprecedentedly introduced an electric ambipolar effect for synergistic manipulation on Zn^(2+)ternary-hydrated eutectic electrolyte(ZTE)enabling high-performance Zn-Br_(2)batteries.The electric ambipolar effect motivates strong dipole interactions among hydrated perchlorates and bipolar ligands of L-carnitine(L-CN)and sulfamide,which reorganized primary cations solvation sheath in a manner of forming Zn[(L-CN)(SA)(H_(2)O)_(4)]^(2+)configuration and dynamically restricting desolvated H2O molecules,thus ensuring a broadened electrochemical window of 2.9 V coupled with high ionic conductivity.Noticeably,L-CN affords an electrostatic shielding effect and an in situ construction of organic-inorganic interphase,endowing oriented Zn anode plating/stripping reversibly for over 2400 h.Therefore,with the synergy of electro/nucleophilicity and exceptional compatibility,the ZTE electrolyte dynamically boosts the conversion redox of Zn-Br_(2)batteries in terms of high specific capacity and stable cycling performance.These findings open a window for designing electrolytes with synergetic chemical stability and compatibility toward advanced zinc-ion batteries.展开更多
Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision.These devices exhibit inherent switchable positive and negative ph...Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision.These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells.However,the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption,making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision.Here,we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe_(2)with an asymmetric gate electrode,achieving high photovoltaic responsivity.By adjusting the gate voltage and keeping bias voltage zero,we can dynamically realize reconfigurable n-–p and n-–n homojunction states,as well as gate-tunable photovoltaic response characteristics that range from positive to negative.The maximum photovoltaic responsivity of the electrically tunable WSe_(2)homojunction is approximately 0.4 A/W,which is significantly larger than the previously reported value~0.1 A/W in homojunction devices.In addition,the responsivity can be further enhanced to approximately 1.0 A/W when the n-–p photodiode operates in reverse bias mode,enabling highsensitivity detection of targets.Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology.展开更多
In the present paper, based on the conservation law of mass and momentum for ion and electron, the distribution of velocity, density of ions and electrons along radial direction are solved numerically. Furthermore, th...In the present paper, based on the conservation law of mass and momentum for ion and electron, the distribution of velocity, density of ions and electrons along radial direction are solved numerically. Furthermore, the comparison between MHD properties of ambipolar and qua- si- ambipolar diffusion is made. The numerical calculation is carried out for argon plasma. The results show that the ion density, ratio of ion and electron velocity at the cathode sheath boundary surface in- crease with the intensity of magnetic induction, meanwhile, the distance between sheaths decreases as well as the radial velocity of ion and electron at the anode sheath boundary. The ion density varies in accord with experiment qualitatively. All parameters mentioned above are not sensitive to magnetic field in ambipolar diffusion.展开更多
Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized...Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized.We select pentacene as a P-type material and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB) as a n-type material in the active layer of the OFETs.The field-effect transistor shows highly air-stable ambipolar characteristics with a field-effect hole mobility of 0.18 cm^2/(V·s) and field-effect electron mobility of 0.031 cm^2/(V·s).Furthermore the mobility only slightly decreases after being exposed to air and remains stable even for exposure to air for more than 60 days.The high electron affinity of PTCDI-TFB and the octadecyltrichlorosilane (OTS) self-assembly monolayer between the SiO2 gate dielectric and the organic active layer result in the observed air-stable characteristics of OFETs with high mobility.The results demonstrate that using the OTS as a modified gate insulator layer and using high electron affinity semiconductor materials are two effective methods to fabricate OFETs with air-stable characteristics and high mobility.展开更多
Artificial synapses with full synapse-like functionalities are of crucial importance for the implementation of neuromorphic computing and bioinspired intelligent systems. In particular, the development of artificial s...Artificial synapses with full synapse-like functionalities are of crucial importance for the implementation of neuromorphic computing and bioinspired intelligent systems. In particular, the development of artificial synapses with the capability to emulate multiplexed neural transmission is highly desirable, but remains challenging. In this work, we proposed a hybrid ambipolar synaptic transistor that combines two-dimensional(2D) molybdenum disulfide(Mo S_(2)) sheet and crystalline one-dimensional(1D) poly(3-hexylthiophene-2,5-diyl) polymer nanowires(P3HT NWs) as dual excitatory channels. Essential synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, synaptic potentiation and depression, and dynamic filtering were emulated using the synaptic transistor. Benefitting from the dual excitatory channels of the synaptic transistor, the device achieved a fast switch between short-term and long-term memory by altering the charge carriers in the dual channels, i.e., electrons and holes. This emulated the multiplexed neural transmission of different excitatory neurotransmitters, e.g., dopamine and noradrenaline. The plasticity-switchable artificial synapse(PSAS) simulates the task-learning process of individuals under different motivations and the impact of success or failure on task learning and memory, which promises the potential to enable complex functionalities in future neuromorphic intelligent electronics.展开更多
Electron-rich thiophene-flanked thiazoloisoindigo(Th-TzII)has been reported as a building block for ambipolar polymeric field-effect transistors however with preferable hole transport.Here,we report that by using an e...Electron-rich thiophene-flanked thiazoloisoindigo(Th-TzII)has been reported as a building block for ambipolar polymeric field-effect transistors however with preferable hole transport.Here,we report that by using an electron deficient thiazole as the flanked moiety,the corresponding thiazoloisoindigo(Tz-TzII)can still be synthesized,although in a more sinuous way.Theoretical calculation and experimental results demonstrate that Tz-TzII is more electron-deficient than Th-TzII,and the corresponding polymer P(TzII-Tz-T-Tz)exhibits high and balanced hole/electron mobility of 0.70/0.64 cm^(2)·V^(-1)·s^(-1).展开更多
A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effe...A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effects of the length of non-uniform gate-oxide layer and dual-material control-gate on the on-state, off-state, and ambipolar currents are investigated. In addition, radio-frequency performance is studied in terms of gain bandwidth product, cut-off frequency,transit time, and transconductance frequency product. Moreover, the length of non-uniform gate-oxide layer and dualmaterial control-gate are optimized to improve the on-off current ratio and radio-frequency performances as well as the suppression of ambipolar current. All results demonstrate that the proposed device not only suppresses ambipolar current but also improves radio-frequency performance compared with the conventional DMCG TFET, which makes the proposed device a better application prospect in the advanced integrated circuits.展开更多
A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics ...A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics such as current-voltage relationships, energy band diagrams, band-to-band tunneling(BTBT) rate and the magnitude of the electric field are investigated by using TCAD simulation. It is found that compared with conventional TTFET and TTFET with gate-drain overlap(GDO) structure, GDS-TTFET not only has the minimum ambipolar current but also can suppress the ambipolar current under a more extensive bias range. Furthermore, the analog/RF performances of GDS-TTFET are also investigated in terms of transconductance, gate-source capacitance, gate-drain capacitance, cutoff frequency, and gain bandwidth production. By inserting a low-κ spacer layer between the gate electrode and the gate dielectric, the GDS structure can effectively reduce parasitic capacitances between the gate and the source/drain, which leads to better performance in term of cutoff frequency and gain bandwidth production. Finally, the thickness of the gate dielectric spacer is optimized for better ambipolar current suppression and improved analog/RF performance.展开更多
A mathematical model and experimental analysis of the impact of oxide thickness on the ambipolar conduction in Schottky Barrier Carbon Nanotubes(CNTs)Field Effect Transistor(SB CNTFETs)is presented.Suppression of ambi...A mathematical model and experimental analysis of the impact of oxide thickness on the ambipolar conduction in Schottky Barrier Carbon Nanotubes(CNTs)Field Effect Transistor(SB CNTFETs)is presented.Suppression of ambipolar conduction in SB CNTFETs is imperative in order to establish them as the future of IC technology.The ambipolar nature of SB CNTFETs leads to a great amount of leakage current.Employing a gate oxide dielectric of thickness,tox^50 nm suppresses the ambipolar behavior.In an SB CNTFET,it is the electric field at the source/drain contacts that control the conductance and the band bending length at the contacts is defined by tox.Therefore,tox is the prime parameter that influences the width of the Schottky barrier and the current in the subthreshold region.Due to the wide SB,there is a loss in on-current due to tunneling,but the current due to thermionic emission is increased by employing a high-κdielectric such as Zirconium dioxide(ZrO2).This work proposes an approach to suppress ambipolar behavior in SB CNTFETs without decreasing the on current.The thickness and dielectric constant of the gate oxide are optimized using the particle swarm optimization(PSO)algorithm to achieve suppression of ambipolar conduction without any loss in on-current.The proposed SB CNTFET was modeled using Verilog-A.Experimental demonstration of the suppression of ambipolar property is also presented.Two SB CNTFETs are fabricated using high-κdielectric such as ZrO2 with different thickness.A device with thin(~5 nm)gate oxide and another device with thick(~50 nm)gate oxide were fabricated.From the experimental results,it is observed that the device with the thin gate oxide exhibited ambipolar characteristics and the device with the thick gate oxide did not exhibit ambipolar characteristics.The increase in thickness,tox,ensures suppression of ambipolar behavior.展开更多
The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost plana...The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost planar molecular configurations of both Si-TDIs and 2Si-TDIs.They exhibited intriguing optical properties including red-shifted absorption and near-infrared emission properties with excellent fluorescence quantum yields,as well as precisely controlled HOMO/LUMO energy levels by Si-heteroannulation.The single-crystal organic field-effect transistors based on 2Si-TDI 5a featuring long and branched alkyl chains demonstrated well-balanced ambipolar transporting properties with electron/hole mobilities of 0.10/0.18 cm2 V^(−1)s^(−1).展开更多
High-performance ambipolar charge transport materials can reduce the manufacturing cost of OFET and OPV devices,and simplify circuit design and device structure.In order to obtain ambipolar donor-acceptor(D-A)polymer,...High-performance ambipolar charge transport materials can reduce the manufacturing cost of OFET and OPV devices,and simplify circuit design and device structure.In order to obtain ambipolar donor-acceptor(D-A)polymer,many efforts have been made through different donor and acceptor combination,halogenation or heteroatom substitution.However,the influencing factor for charge transport polarity is still much complicated.Based on intra-chain super-exchange mechanism for D-A polymer,we found that the energy alignment of donor and acceptor moiety has large impact on charge transport polarity.When the HOMO-LUMO(H-L)gap of the acceptor moiety is narrow,its HOMO/LUMO energy level both lie between the HOMO and LUMO of the donor moiety(sandwich-type energy alignment),and the corresponding D-A copolymers will be more likely ambipolar transport.And thus,take a narrow H-L gap thiazoleisoindigo(TzIID)acceptor as an example,we demonstrated that a series of TzIID based copolymers combined with wide H-L gap donor moieties can reveal ambipolar transport.We further predict several high performance ambipolar D-A copolymers(TzIID-TT etc.)with balanced electron and hole transport,whose effective mass(m_(e)^(*)=0.146 and m_(h)^(*)=0.128)is one of the smallest effective masses among ambipolar materials.展开更多
This work reports on the integration of organic and inorganic semiconductors as heterojunction active layers for high-performance ambipolar transistors and complementary metal-oxide-semiconductor(CMOS)-like inverters....This work reports on the integration of organic and inorganic semiconductors as heterojunction active layers for high-performance ambipolar transistors and complementary metal-oxide-semiconductor(CMOS)-like inverters.Pentacene is employed as a p-type organic semiconductor for its stable electrical performance,while the solution-processed scandium(Sc)substituted indium oxide(ScInO)is employed as an n-type inorganic semiconductor.It is observed that by regulating the doping concentration of Sc,the electrical performance of the n-type semiconductor could be well controlled to obtain a balance with the electrical performance of the p-type semiconductor,which is vital for achieving high-performance inverters.When the doping concentration of Sc is 10 at.%,the CMOS-like logic inverters exhibit a voltage gain larger than 80 and a wide noise margin(53%of the theoretical value).The inverters also respond well to the input signal with frequency up to 500 Hz.展开更多
Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We s...Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We show that the bowing coefficients and band gaps of these alloys are sensitively composition dependent.Due to wave functions full overlapping and delocalization of the Sn outermost p orbits and Zn s orbits,the coupling between these states is very strong,resulting in a significant downshift of conduction band edge with the increase of the Sn concentration x,While the valence band edge keeps almost unchanged compared with that of the binary ZnTe,thus improving the possibility for ambipolar-doping.展开更多
In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and sc...In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and scale-up of the integrated circuits(ICs)again in the foreseeable future.Exploring new materials,new-principle semiconductor devices and new computing architectures is becoming an urgent topic in this field.Ambipolar two-dimensional(2D)semiconductors,possessing excellent electrostatic field controllability and flexibly modulated major charge carriers,offer a possibility to construct reconfigurable devices and enable the ICs with new functions,showing great potential in computing capacity,energy efficiency,time delay and cost.This review focuses on the recent significant advancements in reconfigurable electronic and optoelectronic devices of ambipolar 2D semiconductors,and demonstrates their potential approach towards ICs,like reconfigurable circuits and neuromorphic chips.It is expected to help readers understand the device design principle of ambipolar 2D semiconductors,and push forward exploring more new-principle devices and new-architecture computing circuits,and even their product applications.展开更多
Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap leng...Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap length on the DC characteristics and analog/RF performance of CSP-TFET devices,such as the on-state current(I_(on)),ambipolar current(I_(amb)),transconductance(g_(m)),cut-off frequency(f_(T))and gain–bandwidth product(GBP),are analyzed and compared in this work.Also,a combination of both the dual-metal gate and gate–drain underlap designs has been proposed for the C-shaped pocket dual metal underlap TFET(CSP-DMUN-TFET),which contains a C-shaped pocket area that significantly increases the on-state current of the device;this combination design substantially reduces the ambipolar current.The results show that the CSP-DMUN-TFET demonstrates an excellent performance,including high I_(on)(9.03×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),low SS_(avg)(~13 mV/dec),and low I_(amb)(2.15×10^(-17)A/μm).The CSP-DMUN-TFET has the capability to fully suppress ambipolar currents while maintaining high on-state currents,making it a potential replacement in the next generation of semiconductor devices.展开更多
Scaling of complementary metal-oxide-semiconductor technology nodes using conventional semiconducting materials is slowing down.The development of semiconductor technology with new materials and new concepts has becom...Scaling of complementary metal-oxide-semiconductor technology nodes using conventional semiconducting materials is slowing down.The development of semiconductor technology with new materials and new concepts has become an important focus of scientific and industrial research.In recent years,emerging ambipolar two-dimensional(2D)materials-based reconfigurable devices have shown their potential in high-integration,multifunctional circuits and have begun to attract the attention of researchers.Here,we summarize the latest progress in the field concerning ambipolar 2D materials-based reconfigurable devices.Firstly,we introduce the basic properties and preparation methods of ambipolar 2D materials.Secondly,we discuss the latest applications of reconfigurable devices based on ambipolar 2D materials.Furthermore,we also introduce the current research status of ambipolar material devices in large-scale integration.Finally,we analyze the challenges faced during the development of ambipolar 2D materials-based reconfigurable devices and provide prospects for their future development.展开更多
Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized ...Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized to develop molecular semiconductors with high ambipolar mobility,designated QBDTS and QTBDTS.The theoretical calculation results reveal that QBDTS has a closed-shell structure while QTBDTS showed an open-shell structure with a biradical character(y0)of 0.46 and its magnetic properties were further investigated using electron paramagnetic resonance(EPR)and superconducting quantum interference device(SQUID)methods.The methyl side chains showed a large impact on the molecular orbital levels.The HOMO/LUMO levels of QBDTS and QTBDTS were measured to be-5.66/-4.56 and-5.27/-4.48 eV,respectively,which are favorable for ambipolar charge transport in OFETs.Importantly,the spin-coated QBDTS displayed hole and electron mobilities of 0.01 and 0.5 cm^(2)V^(-1)s^(-1)while QTBDTS showed a record high hole mobility of 1.8 cm^(2)V^(-1)s^(-1)and electron mobility of 0.3 cm^(2)V^(-1)s^(-1).Moreover,comparative studies of the thin film morphologies also manifested the beneficial influence of methyl side chains on film crystallinity and molecule orientation.These results strongly proved that methyl side chain engineering can be a simple but efficient strategy for modulating electronic properties and molecular stacking behaviors.This work also represents a big advancement for quinoidal molecular semiconductors in ambipolar OFET applications.展开更多
Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to...Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties.Here,we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide(WSe_(2))/CdSeS QDs monolayer/molybdenum disulfide(MoS_(2))(2D/0D/2D).Specifically,it exhibits an ambipolar photoresponse characteristic,with a negative photoresponse observed in the 400-600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength.It resulted in the high negative responsivity of up to 52.22 mA·W^(−1)under 400 nm,which is 163 times higher than that of the photodetector without CdSeS QDs.We also demonstrated the negative photoresponse,which could be due to increased carrier collision probability and non-radiative recombination.Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation.Consequently,we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots.Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications.展开更多
Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from ...Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from imbalanced p-type and n-type characteristics and/or stability issues.Herein,a novel single-component ambipolar polymer,namely,gIDT–BBT is reported based on indacenodithiophene(IDT)as the electron donor,benzobisthiadiazole(BBT)as the electron acceptor and oligo ethylene glycol(OEG)as the side chain.Benefitting from the extended backbone planarity and rigidity of IDT,pronounced electron-withdrawing capabil-ity of BBT,favored ionic transport from OEG together with vertical OECT device structure,a nearly balanced ambipolar OECT performance is achieved for gIDT–BBT,revealing a high transconductance of 155.05±1.58/27.28±0.92 mS,a high current on/off ratio>10^(6) and an excellent operational stability under both p-type and n-type operation conditions.With gIDT–BBT in hand,furthermore,vertically stacked complementary inverters are successfully fabricated to show a maximum voltage gain of 28 V V^(-1)(V_(IN)=0.9 V)and stable operation over 1000 switching cycles,and then used for efficient electrooculogram recording.This work provides a new approach for the development of ambipolar single-component organic mixed ionic–electronic conductors and establishes a foundation for the manufacture of high-performance ambipolar OECTs and associated complementary circuits.展开更多
基金the National Natural-Science Foundation of China(Grant No.62304137)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012479,2024A1515011737,and 2024A1515010006)+4 种基金the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20220818100206013)RSC Researcher Collaborations Grant(Grant No.C23-2422436283)State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024010)the Project on Frontier and Interdisciplinary Research Assessment,Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2023XXA002)NTUT-SZU Joint Research Program.
文摘In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.
基金provided by the National Natural Science Foundation of China(Grant No.52373208 and 61831021)the ECNU Academic Innovation Promotion Program for Excellent Doctoral Students(YBNLTS2024-021).
文摘The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and suboptimal compatibility between the electrolytes and electrodes.Here,we unprecedentedly introduced an electric ambipolar effect for synergistic manipulation on Zn^(2+)ternary-hydrated eutectic electrolyte(ZTE)enabling high-performance Zn-Br_(2)batteries.The electric ambipolar effect motivates strong dipole interactions among hydrated perchlorates and bipolar ligands of L-carnitine(L-CN)and sulfamide,which reorganized primary cations solvation sheath in a manner of forming Zn[(L-CN)(SA)(H_(2)O)_(4)]^(2+)configuration and dynamically restricting desolvated H2O molecules,thus ensuring a broadened electrochemical window of 2.9 V coupled with high ionic conductivity.Noticeably,L-CN affords an electrostatic shielding effect and an in situ construction of organic-inorganic interphase,endowing oriented Zn anode plating/stripping reversibly for over 2400 h.Therefore,with the synergy of electro/nucleophilicity and exceptional compatibility,the ZTE electrolyte dynamically boosts the conversion redox of Zn-Br_(2)batteries in terms of high specific capacity and stable cycling performance.These findings open a window for designing electrolytes with synergetic chemical stability and compatibility toward advanced zinc-ion batteries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62375131,62204119,62122036,and 62304104)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220947)the Funding of NJUST(Grant No.TSXK2022D008)。
文摘Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision.These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells.However,the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption,making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision.Here,we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe_(2)with an asymmetric gate electrode,achieving high photovoltaic responsivity.By adjusting the gate voltage and keeping bias voltage zero,we can dynamically realize reconfigurable n-–p and n-–n homojunction states,as well as gate-tunable photovoltaic response characteristics that range from positive to negative.The maximum photovoltaic responsivity of the electrically tunable WSe_(2)homojunction is approximately 0.4 A/W,which is significantly larger than the previously reported value~0.1 A/W in homojunction devices.In addition,the responsivity can be further enhanced to approximately 1.0 A/W when the n-–p photodiode operates in reverse bias mode,enabling highsensitivity detection of targets.Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology.
文摘In the present paper, based on the conservation law of mass and momentum for ion and electron, the distribution of velocity, density of ions and electrons along radial direction are solved numerically. Furthermore, the comparison between MHD properties of ambipolar and qua- si- ambipolar diffusion is made. The numerical calculation is carried out for argon plasma. The results show that the ion density, ratio of ion and electron velocity at the cathode sheath boundary surface in- crease with the intensity of magnetic induction, meanwhile, the distance between sheaths decreases as well as the radial velocity of ion and electron at the anode sheath boundary. The ion density varies in accord with experiment qualitatively. All parameters mentioned above are not sensitive to magnetic field in ambipolar diffusion.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60676033 and 60276026)the Natural Science Foundation of Gansu Province,China (Grant No ZS031-A25-012-G)‘Qing Lan’ Talent Engineering Funds from Lanzhou Jiaotong University,China (Grant No QL-08-18A)
文摘Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized.We select pentacene as a P-type material and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB) as a n-type material in the active layer of the OFETs.The field-effect transistor shows highly air-stable ambipolar characteristics with a field-effect hole mobility of 0.18 cm^2/(V·s) and field-effect electron mobility of 0.031 cm^2/(V·s).Furthermore the mobility only slightly decreases after being exposed to air and remains stable even for exposure to air for more than 60 days.The high electron affinity of PTCDI-TFB and the octadecyltrichlorosilane (OTS) self-assembly monolayer between the SiO2 gate dielectric and the organic active layer result in the observed air-stable characteristics of OFETs with high mobility.The results demonstrate that using the OTS as a modified gate insulator layer and using high electron affinity semiconductor materials are two effective methods to fabricate OFETs with air-stable characteristics and high mobility.
基金supported by the National Science Fund for Distinguished Young Scholars of China (No. T2125005)the Tianjin Science Foundation for Distinguished Young Scholars (No. 19JCJQJC61000)the Shenzhen Science and Technology Project (No. JCYJ20210324121002008)。
文摘Artificial synapses with full synapse-like functionalities are of crucial importance for the implementation of neuromorphic computing and bioinspired intelligent systems. In particular, the development of artificial synapses with the capability to emulate multiplexed neural transmission is highly desirable, but remains challenging. In this work, we proposed a hybrid ambipolar synaptic transistor that combines two-dimensional(2D) molybdenum disulfide(Mo S_(2)) sheet and crystalline one-dimensional(1D) poly(3-hexylthiophene-2,5-diyl) polymer nanowires(P3HT NWs) as dual excitatory channels. Essential synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, synaptic potentiation and depression, and dynamic filtering were emulated using the synaptic transistor. Benefitting from the dual excitatory channels of the synaptic transistor, the device achieved a fast switch between short-term and long-term memory by altering the charge carriers in the dual channels, i.e., electrons and holes. This emulated the multiplexed neural transmission of different excitatory neurotransmitters, e.g., dopamine and noradrenaline. The plasticity-switchable artificial synapse(PSAS) simulates the task-learning process of individuals under different motivations and the impact of success or failure on task learning and memory, which promises the potential to enable complex functionalities in future neuromorphic intelligent electronics.
基金financially supported by the National Natural Science Foundation of China(Nos.22075105 and 22102086)the start-up funding from Jianghan University。
文摘Electron-rich thiophene-flanked thiazoloisoindigo(Th-TzII)has been reported as a building block for ambipolar polymeric field-effect transistors however with preferable hole transport.Here,we report that by using an electron deficient thiazole as the flanked moiety,the corresponding thiazoloisoindigo(Tz-TzII)can still be synthesized,although in a more sinuous way.Theoretical calculation and experimental results demonstrate that Tz-TzII is more electron-deficient than Th-TzII,and the corresponding polymer P(TzII-Tz-T-Tz)exhibits high and balanced hole/electron mobility of 0.70/0.64 cm^(2)·V^(-1)·s^(-1).
基金Project supported by the University Natural Science Research Key Project of Anhui Province,China(Grant No.KJ2017A502)the Introduced Talent Project of Anhui Science and Technology University,China(Grant No.DQYJ201603)+1 种基金the Excellent Talents Supporting Project of Colleges and Universities,China(Grant No.gxyq2018048)the Innovation and Entrepreneurship Training Program for College Students,China(Grant No.2018S10879052)
文摘A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effects of the length of non-uniform gate-oxide layer and dual-material control-gate on the on-state, off-state, and ambipolar currents are investigated. In addition, radio-frequency performance is studied in terms of gain bandwidth product, cut-off frequency,transit time, and transconductance frequency product. Moreover, the length of non-uniform gate-oxide layer and dualmaterial control-gate are optimized to improve the on-off current ratio and radio-frequency performances as well as the suppression of ambipolar current. All results demonstrate that the proposed device not only suppresses ambipolar current but also improves radio-frequency performance compared with the conventional DMCG TFET, which makes the proposed device a better application prospect in the advanced integrated circuits.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61306116 and 61472322)
文摘A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics such as current-voltage relationships, energy band diagrams, band-to-band tunneling(BTBT) rate and the magnitude of the electric field are investigated by using TCAD simulation. It is found that compared with conventional TTFET and TTFET with gate-drain overlap(GDO) structure, GDS-TTFET not only has the minimum ambipolar current but also can suppress the ambipolar current under a more extensive bias range. Furthermore, the analog/RF performances of GDS-TTFET are also investigated in terms of transconductance, gate-source capacitance, gate-drain capacitance, cutoff frequency, and gain bandwidth production. By inserting a low-κ spacer layer between the gate electrode and the gate dielectric, the GDS structure can effectively reduce parasitic capacitances between the gate and the source/drain, which leads to better performance in term of cutoff frequency and gain bandwidth production. Finally, the thickness of the gate dielectric spacer is optimized for better ambipolar current suppression and improved analog/RF performance.
文摘A mathematical model and experimental analysis of the impact of oxide thickness on the ambipolar conduction in Schottky Barrier Carbon Nanotubes(CNTs)Field Effect Transistor(SB CNTFETs)is presented.Suppression of ambipolar conduction in SB CNTFETs is imperative in order to establish them as the future of IC technology.The ambipolar nature of SB CNTFETs leads to a great amount of leakage current.Employing a gate oxide dielectric of thickness,tox^50 nm suppresses the ambipolar behavior.In an SB CNTFET,it is the electric field at the source/drain contacts that control the conductance and the band bending length at the contacts is defined by tox.Therefore,tox is the prime parameter that influences the width of the Schottky barrier and the current in the subthreshold region.Due to the wide SB,there is a loss in on-current due to tunneling,but the current due to thermionic emission is increased by employing a high-κdielectric such as Zirconium dioxide(ZrO2).This work proposes an approach to suppress ambipolar behavior in SB CNTFETs without decreasing the on current.The thickness and dielectric constant of the gate oxide are optimized using the particle swarm optimization(PSO)algorithm to achieve suppression of ambipolar conduction without any loss in on-current.The proposed SB CNTFET was modeled using Verilog-A.Experimental demonstration of the suppression of ambipolar property is also presented.Two SB CNTFETs are fabricated using high-κdielectric such as ZrO2 with different thickness.A device with thin(~5 nm)gate oxide and another device with thick(~50 nm)gate oxide were fabricated.From the experimental results,it is observed that the device with the thin gate oxide exhibited ambipolar characteristics and the device with the thick gate oxide did not exhibit ambipolar characteristics.The increase in thickness,tox,ensures suppression of ambipolar behavior.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC,Nos.21901138,21790361 and 22122503)the Shandong Provincial Natural Science Foundation(No.ZR2019ZD50)China Fundamental Research Funds for the Central Universities(No.2-9-2020-041).
文摘The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost planar molecular configurations of both Si-TDIs and 2Si-TDIs.They exhibited intriguing optical properties including red-shifted absorption and near-infrared emission properties with excellent fluorescence quantum yields,as well as precisely controlled HOMO/LUMO energy levels by Si-heteroannulation.The single-crystal organic field-effect transistors based on 2Si-TDI 5a featuring long and branched alkyl chains demonstrated well-balanced ambipolar transporting properties with electron/hole mobilities of 0.10/0.18 cm2 V^(−1)s^(−1).
基金National Key R&D Program of China(Nos.2017YFA0204700 and 2017YFA0204502)the National Natural Science Foundation of China(No.22090022)+2 种基金Beijing Municipal natural science Foundation(No.2192013)Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds(Nos.19530012018 and 19530011018)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB12020200).
文摘High-performance ambipolar charge transport materials can reduce the manufacturing cost of OFET and OPV devices,and simplify circuit design and device structure.In order to obtain ambipolar donor-acceptor(D-A)polymer,many efforts have been made through different donor and acceptor combination,halogenation or heteroatom substitution.However,the influencing factor for charge transport polarity is still much complicated.Based on intra-chain super-exchange mechanism for D-A polymer,we found that the energy alignment of donor and acceptor moiety has large impact on charge transport polarity.When the HOMO-LUMO(H-L)gap of the acceptor moiety is narrow,its HOMO/LUMO energy level both lie between the HOMO and LUMO of the donor moiety(sandwich-type energy alignment),and the corresponding D-A copolymers will be more likely ambipolar transport.And thus,take a narrow H-L gap thiazoleisoindigo(TzIID)acceptor as an example,we demonstrated that a series of TzIID based copolymers combined with wide H-L gap donor moieties can reveal ambipolar transport.We further predict several high performance ambipolar D-A copolymers(TzIID-TT etc.)with balanced electron and hole transport,whose effective mass(m_(e)^(*)=0.146 and m_(h)^(*)=0.128)is one of the smallest effective masses among ambipolar materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574003 and 61774010)Shenzhen Municipal Scientific Program,China(Grant Nos.GGFW20170728163447038 and JCYJ20180504165449640).
文摘This work reports on the integration of organic and inorganic semiconductors as heterojunction active layers for high-performance ambipolar transistors and complementary metal-oxide-semiconductor(CMOS)-like inverters.Pentacene is employed as a p-type organic semiconductor for its stable electrical performance,while the solution-processed scandium(Sc)substituted indium oxide(ScInO)is employed as an n-type inorganic semiconductor.It is observed that by regulating the doping concentration of Sc,the electrical performance of the n-type semiconductor could be well controlled to obtain a balance with the electrical performance of the p-type semiconductor,which is vital for achieving high-performance inverters.When the doping concentration of Sc is 10 at.%,the CMOS-like logic inverters exhibit a voltage gain larger than 80 and a wide noise margin(53%of the theoretical value).The inverters also respond well to the input signal with frequency up to 500 Hz.
基金Supported by the National Basic Research Program of China under Grant No. 2011CB606405the Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ4002the Fundamental Research Funds for the Central Universities
文摘Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We show that the bowing coefficients and band gaps of these alloys are sensitively composition dependent.Due to wave functions full overlapping and delocalization of the Sn outermost p orbits and Zn s orbits,the coupling between these states is very strong,resulting in a significant downshift of conduction band edge with the increase of the Sn concentration x,While the valence band edge keeps almost unchanged compared with that of the binary ZnTe,thus improving the possibility for ambipolar-doping.
基金Project supported by the National Natural Science Foundation of China (Grant No.62274037)the National Key Research and Development Program of China (Grant No.2018YFA0703703)+1 种基金the Ministry of Science and Technology of China (Grant No.2018YFE0118300)the State Key Laboratory of ASIC&System (Grant No.2021MS003)。
文摘In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and scale-up of the integrated circuits(ICs)again in the foreseeable future.Exploring new materials,new-principle semiconductor devices and new computing architectures is becoming an urgent topic in this field.Ambipolar two-dimensional(2D)semiconductors,possessing excellent electrostatic field controllability and flexibly modulated major charge carriers,offer a possibility to construct reconfigurable devices and enable the ICs with new functions,showing great potential in computing capacity,energy efficiency,time delay and cost.This review focuses on the recent significant advancements in reconfigurable electronic and optoelectronic devices of ambipolar 2D semiconductors,and demonstrates their potential approach towards ICs,like reconfigurable circuits and neuromorphic chips.It is expected to help readers understand the device design principle of ambipolar 2D semiconductors,and push forward exploring more new-principle devices and new-architecture computing circuits,and even their product applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52177185 and 62174055)。
文摘Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap length on the DC characteristics and analog/RF performance of CSP-TFET devices,such as the on-state current(I_(on)),ambipolar current(I_(amb)),transconductance(g_(m)),cut-off frequency(f_(T))and gain–bandwidth product(GBP),are analyzed and compared in this work.Also,a combination of both the dual-metal gate and gate–drain underlap designs has been proposed for the C-shaped pocket dual metal underlap TFET(CSP-DMUN-TFET),which contains a C-shaped pocket area that significantly increases the on-state current of the device;this combination design substantially reduces the ambipolar current.The results show that the CSP-DMUN-TFET demonstrates an excellent performance,including high I_(on)(9.03×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),low SS_(avg)(~13 mV/dec),and low I_(amb)(2.15×10^(-17)A/μm).The CSP-DMUN-TFET has the capability to fully suppress ambipolar currents while maintaining high on-state currents,making it a potential replacement in the next generation of semiconductor devices.
基金supported by the National Natural Science Foundation of China(22175184 and 22105207)the CAS Project for Young Scientists in Basic Research(YSBR-053)+1 种基金the Strategic Priority Research Programme of the Chinese Academy of Sciences(XDB0520202)the CAS Project for Young Scientists in Interdisciplinary Research.
文摘Scaling of complementary metal-oxide-semiconductor technology nodes using conventional semiconducting materials is slowing down.The development of semiconductor technology with new materials and new concepts has become an important focus of scientific and industrial research.In recent years,emerging ambipolar two-dimensional(2D)materials-based reconfigurable devices have shown their potential in high-integration,multifunctional circuits and have begun to attract the attention of researchers.Here,we summarize the latest progress in the field concerning ambipolar 2D materials-based reconfigurable devices.Firstly,we introduce the basic properties and preparation methods of ambipolar 2D materials.Secondly,we discuss the latest applications of reconfigurable devices based on ambipolar 2D materials.Furthermore,we also introduce the current research status of ambipolar material devices in large-scale integration.Finally,we analyze the challenges faced during the development of ambipolar 2D materials-based reconfigurable devices and provide prospects for their future development.
基金supported by the National Natural Science Foundation of China(21801201,51773160,21975194,22175134)the Research Fund for Distinguished Young Scholars of Hubei Province(2019CFA042)。
文摘Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized to develop molecular semiconductors with high ambipolar mobility,designated QBDTS and QTBDTS.The theoretical calculation results reveal that QBDTS has a closed-shell structure while QTBDTS showed an open-shell structure with a biradical character(y0)of 0.46 and its magnetic properties were further investigated using electron paramagnetic resonance(EPR)and superconducting quantum interference device(SQUID)methods.The methyl side chains showed a large impact on the molecular orbital levels.The HOMO/LUMO levels of QBDTS and QTBDTS were measured to be-5.66/-4.56 and-5.27/-4.48 eV,respectively,which are favorable for ambipolar charge transport in OFETs.Importantly,the spin-coated QBDTS displayed hole and electron mobilities of 0.01 and 0.5 cm^(2)V^(-1)s^(-1)while QTBDTS showed a record high hole mobility of 1.8 cm^(2)V^(-1)s^(-1)and electron mobility of 0.3 cm^(2)V^(-1)s^(-1).Moreover,comparative studies of the thin film morphologies also manifested the beneficial influence of methyl side chains on film crystallinity and molecule orientation.These results strongly proved that methyl side chain engineering can be a simple but efficient strategy for modulating electronic properties and molecular stacking behaviors.This work also represents a big advancement for quinoidal molecular semiconductors in ambipolar OFET applications.
基金the financial support from the KIST Institution Program(No.2E32634)Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT)(Nos.NRF-2017R1A2B3002307 and NRF-2016M3A7B4900135)+1 种基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2020R1A6A3A01099388)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(Nos.NRF-2022M3H4A1A04074153 and RS-2023-00239634).
文摘Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties.Here,we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide(WSe_(2))/CdSeS QDs monolayer/molybdenum disulfide(MoS_(2))(2D/0D/2D).Specifically,it exhibits an ambipolar photoresponse characteristic,with a negative photoresponse observed in the 400-600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength.It resulted in the high negative responsivity of up to 52.22 mA·W^(−1)under 400 nm,which is 163 times higher than that of the photodetector without CdSeS QDs.We also demonstrated the negative photoresponse,which could be due to increased carrier collision probability and non-radiative recombination.Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation.Consequently,we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots.Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications.
基金Sichuan Science and Technology Program,Grant/Award Number:2023ZYD0161Chengdu Science and Technology Bureau,Grant/Award Number:2023-YF06-00028-HZ+5 种基金National Natural Science Foundation of China,Grant/Award Numbers:92163132,52263019,52273316,62273073Yunnan Fundamental Research Project,Grant/Award Number:202301AT070313Yunling Scholar Project of“Yunnan Revitalization Talent Support Program”National Key Research and Development Program of China,Grant/Award Numbers:2022YFE0134800,2023YFC2411800Aeronautical Science Foundation of China,Grant/Award Number:20230024080002Yunnan Provincial Department of Education Science Research Fund Graduate Program,Grant/Award Number:2023Y0236。
文摘Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from imbalanced p-type and n-type characteristics and/or stability issues.Herein,a novel single-component ambipolar polymer,namely,gIDT–BBT is reported based on indacenodithiophene(IDT)as the electron donor,benzobisthiadiazole(BBT)as the electron acceptor and oligo ethylene glycol(OEG)as the side chain.Benefitting from the extended backbone planarity and rigidity of IDT,pronounced electron-withdrawing capabil-ity of BBT,favored ionic transport from OEG together with vertical OECT device structure,a nearly balanced ambipolar OECT performance is achieved for gIDT–BBT,revealing a high transconductance of 155.05±1.58/27.28±0.92 mS,a high current on/off ratio>10^(6) and an excellent operational stability under both p-type and n-type operation conditions.With gIDT–BBT in hand,furthermore,vertically stacked complementary inverters are successfully fabricated to show a maximum voltage gain of 28 V V^(-1)(V_(IN)=0.9 V)and stable operation over 1000 switching cycles,and then used for efficient electrooculogram recording.This work provides a new approach for the development of ambipolar single-component organic mixed ionic–electronic conductors and establishes a foundation for the manufacture of high-performance ambipolar OECTs and associated complementary circuits.