The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.T...The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.The results indicate that increasing addition temperature of MgCO3 or pouring temperature is beneficial for obtaining fine grains.There is an optimal addition amount of 1.2%at the addition temperature of 790°C.Prolonging holding time at 790°C will increase grain size.The grain refining technique that 1.2%MgCO3 is added at 790°C followed by holding for 10 min and pouring can decrease the grain size from 348μm of the un-refined alloy to 69μm.The nucleation substrates are actually the Al4C3 particles formed from reactions between the MgCO3 and alloying elements in the melt.Besides the heterogeneous nucleation regime,growth restriction of the Al4C3 particles agglomerated at growing front is the other mechanism.展开更多
Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The inf...Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The influences of the slow shot speed, the fast shot speed and the biscuit thickness on the externally solidified crystals (ESCs) were investigated. With the increase of the biscuit thickness, the number of the ESCs in the cast samples decreases. Under a low slow shot speed, larg ESCs are found in the cast structure and a high fast shot speed results in more spherical ESCs. The relationships between ESCs and process parameters were also discussed.展开更多
The microstructural evolution and kinetic characteristics were studied during solution treatment of AM60B Mg alloy prepared by thixoforming. The results indicate that the microstructural evolution includes two stages...The microstructural evolution and kinetic characteristics were studied during solution treatment of AM60B Mg alloy prepared by thixoforming. The results indicate that the microstructural evolution includes two stages: the first stage involves rapid dissolution of eutectic β (Mg 17 Al 12 ) phase, homogenization and coarsening, and the second stage is regarded as normal grain growth consisting of primary α-Mg particles (primary particles) and secondary α-Mg grains (secondary grains). In the first stage, the dissolution completes in a quite short time because the fine β phase can quickly dissolve into the small-sized secondary grains. The homogenization of Al element needs relatively long time. Simultaneously, the microstructure morphology and average grain size obviously change. The first stage sustains approximately 1 h when it is solutionized at 395 ℃ Comparatively, the second stage needs very long time and the microstructure evolves quite slowly as a result of low Al content gradient and thus low diffusivity of Al element after the homogenization of the first stage. The growth model of primary particles obeys power function while that of the secondary grains follows the traditional growth equation in the first stage. In the second stage, both of the primary particles and secondary grains behave a same model controlled by diffusion along grain boundaries and through crystal lattice.展开更多
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023) supported by the Program for New Century Excellent Talents in University of China
文摘The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.The results indicate that increasing addition temperature of MgCO3 or pouring temperature is beneficial for obtaining fine grains.There is an optimal addition amount of 1.2%at the addition temperature of 790°C.Prolonging holding time at 790°C will increase grain size.The grain refining technique that 1.2%MgCO3 is added at 790°C followed by holding for 10 min and pouring can decrease the grain size from 348μm of the un-refined alloy to 69μm.The nucleation substrates are actually the Al4C3 particles formed from reactions between the MgCO3 and alloying elements in the melt.Besides the heterogeneous nucleation regime,growth restriction of the Al4C3 particles agglomerated at growing front is the other mechanism.
基金Project(2009AA03Z114)supported by the National High-tech Research and Development Program of ChinaProject supported by Tsinghua-Toyo R&D Center of Magnesium and Aluminum Alloys Processing Technology
文摘Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The influences of the slow shot speed, the fast shot speed and the biscuit thickness on the externally solidified crystals (ESCs) were investigated. With the increase of the biscuit thickness, the number of the ESCs in the cast samples decreases. Under a low slow shot speed, larg ESCs are found in the cast structure and a high fast shot speed results in more spherical ESCs. The relationships between ESCs and process parameters were also discussed.
基金Project(G2007CB613706)supported by the National Basic Research Program of ChinaProject supported by the Development Program for Outstanding Young Teachers in Lanzhou University of Technology, ChinaProject(SKL03004)supported by the Opening Foundation of State Key Laboratory of Advanced Nonferrous Materials, China
文摘The microstructural evolution and kinetic characteristics were studied during solution treatment of AM60B Mg alloy prepared by thixoforming. The results indicate that the microstructural evolution includes two stages: the first stage involves rapid dissolution of eutectic β (Mg 17 Al 12 ) phase, homogenization and coarsening, and the second stage is regarded as normal grain growth consisting of primary α-Mg particles (primary particles) and secondary α-Mg grains (secondary grains). In the first stage, the dissolution completes in a quite short time because the fine β phase can quickly dissolve into the small-sized secondary grains. The homogenization of Al element needs relatively long time. Simultaneously, the microstructure morphology and average grain size obviously change. The first stage sustains approximately 1 h when it is solutionized at 395 ℃ Comparatively, the second stage needs very long time and the microstructure evolves quite slowly as a result of low Al content gradient and thus low diffusivity of Al element after the homogenization of the first stage. The growth model of primary particles obeys power function while that of the secondary grains follows the traditional growth equation in the first stage. In the second stage, both of the primary particles and secondary grains behave a same model controlled by diffusion along grain boundaries and through crystal lattice.