The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make th...The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make the task difficult.Therefore,to enhance the accuracy of the fine-grained ship image recognition,we design a fine-grained ship image recognition network based on bilinear convolutional neural network(BCNN)with Inception and additive margin Softmax(AM-Softmax).This network improves the BCNN in two aspects.Firstly,by introducing Inception branches to the BCNN network,it is helpful to enhance the ability of extracting comprehensive features from ships.Secondly,by adding margin values to the decision boundary,the AM-Softmax function can better extend the inter-class differences and reduce the intra-class differences.In addition,as there are few publicly available datasets for fine-grained ship image recognition,we construct a Ship-43 dataset containing 47,300 ship images belonging to 43 categories.Experimental results on the constructed Ship-43 dataset demonstrate that our method can effectively improve the accuracy of ship image recognition,which is 4.08%higher than the BCNN model.Moreover,comparison results on the other three public fine-grained datasets(Cub,Cars,and Aircraft)further validate the effectiveness of the proposed method.展开更多
Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid mo...Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.展开更多
基金This work is supported by the National Natural Science Foundation of China(61806013,61876010,62176009,and 61906005)General project of Science and Technology Planof Beijing Municipal Education Commission(KM202110005028)+2 种基金Beijing Municipal Education Commission Project(KZ201910005008)Project of Interdisciplinary Research Institute of Beijing University of Technology(2021020101)International Research Cooperation Seed Fund of Beijing University of Technology(2021A01).
文摘The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make the task difficult.Therefore,to enhance the accuracy of the fine-grained ship image recognition,we design a fine-grained ship image recognition network based on bilinear convolutional neural network(BCNN)with Inception and additive margin Softmax(AM-Softmax).This network improves the BCNN in two aspects.Firstly,by introducing Inception branches to the BCNN network,it is helpful to enhance the ability of extracting comprehensive features from ships.Secondly,by adding margin values to the decision boundary,the AM-Softmax function can better extend the inter-class differences and reduce the intra-class differences.In addition,as there are few publicly available datasets for fine-grained ship image recognition,we construct a Ship-43 dataset containing 47,300 ship images belonging to 43 categories.Experimental results on the constructed Ship-43 dataset demonstrate that our method can effectively improve the accuracy of ship image recognition,which is 4.08%higher than the BCNN model.Moreover,comparison results on the other three public fine-grained datasets(Cub,Cars,and Aircraft)further validate the effectiveness of the proposed method.
基金Fundamental Research Funds for the Central University,China(No.2232018D3-17)。
文摘Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.