In this paper, we show that if Vo is a 1-Lipschitz mapping between unit spheres of two ALP-spaces with p 〉 2 and -Vo(S1(LP)) C Vo(S1(LP)), then V0 can be extended to a linear isometry defined on the whole spa...In this paper, we show that if Vo is a 1-Lipschitz mapping between unit spheres of two ALP-spaces with p 〉 2 and -Vo(S1(LP)) C Vo(S1(LP)), then V0 can be extended to a linear isometry defined on the whole space. If 1 〈 p 〈 2 and Vo is an "anti-l-Lipschitz" mapping, then Vo can also be linearly and isometrically extended.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10871101)Research Fund for the Doctoral Program of Higher Education (Grant No. 20060055010)
文摘In this paper, we show that if Vo is a 1-Lipschitz mapping between unit spheres of two ALP-spaces with p 〉 2 and -Vo(S1(LP)) C Vo(S1(LP)), then V0 can be extended to a linear isometry defined on the whole space. If 1 〈 p 〈 2 and Vo is an "anti-l-Lipschitz" mapping, then Vo can also be linearly and isometrically extended.