期刊文献+
共找到115,301篇文章
< 1 2 250 >
每页显示 20 50 100
Thermally Drawn Flexible Fiber Sensors:Principles,Materials,Structures,and Applications
1
作者 ZhaoLun Zhang Yuchang Xue +7 位作者 Pengyu Zhang Xiao Yang Xishun Wang Chunyang Wang Haisheng Chen Xinghua Zheng Xin Yin Ting Zhang 《Nano-Micro Letters》 2026年第1期95-129,共35页
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib... Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed. 展开更多
关键词 Thermally drawn fiber sensors Sensing principles Temperature sensors Mechanical sensors Multifunctional sensors
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
2
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
3
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes sensor Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus
4
作者 Ali Sedighi Tianyu Kou +1 位作者 Hui Huang Yi Li 《Nano-Micro Letters》 2026年第1期375-437,共63页
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in... Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management. 展开更多
关键词 Wearable biosensors Multimodal sensors Diabetes monitoring Sweat biomarkers Glucose biosensors
在线阅读 下载PDF
Ultrathin Gallium Nitride Quantum-Disk-in-Nanowire-Enabled Reconfigurable Bioinspired Sensor for High-Accuracy Human Action Recognition
5
作者 Zhixiang Gao Xin Ju +10 位作者 Huabin Yu Wei Chen Xin Liu Yuanmin Luo Yang Kang Dongyang Luo JiKai Yao Wengang Gu Muhammad Hunain Memon Yong Yan Haiding Sun 《Nano-Micro Letters》 2026年第2期439-453,共15页
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac... Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics. 展开更多
关键词 GaN nanowire Quantum-confined Stark effect Voltage-tunable photoresponse Bioinspired sensor Artificial vision system
在线阅读 下载PDF
Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
6
作者 Pei Li Shipan Lang +6 位作者 Lei Xie Yong Zhang Xin Gou Chao Zhang Chenhui Dong Chunbao Li Jun Yang 《Nano-Micro Letters》 2026年第2期454-470,共17页
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show... The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices. 展开更多
关键词 Iontronic sensor Skin-inspired design Linear range Linear sensing factor Biomechanical monitoring
在线阅读 下载PDF
GraphPad Prism软件在水氟外质控考核评价中的应用
7
作者 蒲光兰 喇翠玲 +9 位作者 陈萍 鲁青 周昕 杨佩珍 李亚楠 杨萍 胡兰盛 王明君 孟献亚 张强 《中国地方病防治》 2025年第3期214-216,共3页
目的促进GraphPad Prism软件在实验室能力评价中的应用,了解各种示意图统计表达意义。方法对2023年青海省52个实验室水氟外质控结果运用GraphPad Prism软件制作Z比分数柱状图、重复测定结果偏差棒图、Z比分数分布频率直方图以及警告线... 目的促进GraphPad Prism软件在实验室能力评价中的应用,了解各种示意图统计表达意义。方法对2023年青海省52个实验室水氟外质控结果运用GraphPad Prism软件制作Z比分数柱状图、重复测定结果偏差棒图、Z比分数分布频率直方图以及警告线和失控线折线图。Z比分数评价标准:|Z|≤2表示满意,无需采取进一步措施;2<|Z|<3表示有问题,产生警诫信号;|Z|≥3表示不满意,产生措施信号。根据实验室间和实验室内的Z比分值,分析系统误差和随机误差。结果青海省水氟外质控考核三级实验室变异系数:低浓度和高浓度检测结果比较,省、市(州)级实验室较县(市、区)级实验室变异系数小;Z比分数柱状图结果:52个实验室室间|Z|均≤2,属于满意结果;12、43号实验室的室内2<|Z|<3,属于可疑结果;其余|Z|均≤2,属于满意结果。重复测定结果偏差棒图:低浓度样品偏差棒图中36、46号实验室精密度欠佳,高浓度样品偏差棒图中31、34、36、43号实验室精密度欠佳;Z比分数分布频率直方图:所有参加考核的实验室提交的实验室间Z比分数结果为满意,实验室内Z比分数中,绝大多数实验室结果满意,实验室内和实验室间Z比分数出现正偏差的实验室多于出现负偏差的实验室;警告线和失控线折线图:低浓度样品9、25、30、46号实验室检测结果达到警告线、高浓度样品5、27、30、33号实验室检测结果达到警告线、41号实验室超过失控线,这些实验室均提示检测质量欠佳,应引起重视。结论GraphPad Prism软件能运用多种图示直观、清晰地进行实验室外质控考核评价,青海省个别实验室存在系统误差和随机误差,需查找误差产生的原因,加强实验室内部质量控制,提高实验室检测质量。 展开更多
关键词 GraphPad prism软件 水氟 外质控 考核评价
原文传递
绵阳市中心医院老年群体肺功能筛查PRISm情况及危险因素分析
8
作者 杨阳 李辛岚 徐维国 《中南医学科学杂志》 2025年第5期879-882,共4页
目的分析绵阳市中心医院老年群体肺功能筛查保留比值受损肺功能(PRISm)情况及危险因素。方法选取绵阳市中心医院接受肺功能筛查的老年体检人群296例,按照肺功能水平分为PRISm组36例、气流阻塞组20例和正常组240例。比较各组临床资料,采... 目的分析绵阳市中心医院老年群体肺功能筛查保留比值受损肺功能(PRISm)情况及危险因素。方法选取绵阳市中心医院接受肺功能筛查的老年体检人群296例,按照肺功能水平分为PRISm组36例、气流阻塞组20例和正常组240例。比较各组临床资料,采用单因素和多因素Logistic回归分析老年受试群体发生PRISm的危险因素。结果296例老年受试者中,PRISm发生率为12.16%(36/296),气流阻塞发生率为6.76%(20/296),肺功能正常率为81.08%(240/296)。PRISm组及气流阻塞组受试者男性、体质指数(BMI)≥24 kg/m^(2)、吸烟史、职业暴露史、高血压占比大于正常组(P<0.05);正常组受试者的肺功能水平高于PRISm组及气流阻塞组,且PRISm组高于气流阻塞组(P<0.05)。多因素Logistic回归分析显示,男性、BMI≥24 kg/m^(2)、吸烟史、职业暴露史、高血压是老年群体发生PRISm情况的独立危险因素(P<0.05)。结论绵阳市中心医院肺功能筛查老年群体中PRISm发生率较高,男性、肥胖、吸烟史、职业暴露史及高血压是其危险因素。 展开更多
关键词 prism 肺功能筛查 老年群体 危险因素
暂未订购
Sensitivity Dependence of Surface Plasmon Resonance Based Sensors on Prism Refractive Index 被引量:1
9
作者 Wang Guo-ping Sugiura Tadao Kawata Satoshi 《Wuhan University Journal of Natural Sciences》 EI CAS 2002年第1期47-50,共4页
We theoretically and experimentally demonstrate that refractive index of the prism used to load metal film has significant influence on sensitivity of surface plasmon resonance based sensors. The prism with lower refr... We theoretically and experimentally demonstrate that refractive index of the prism used to load metal film has significant influence on sensitivity of surface plasmon resonance based sensors. The prism with lower refractive index gives the sensors a higher sensitivity in detecting refractive index variations of a sample. We attribute this effect to the fact that a prism with low refractive index will increase coupling distance between surface plasmons and the medium under investigation. 展开更多
关键词 surface plasmon resonance sensorS sensitivity prism propagation length
在线阅读 下载PDF
基于PRISM的贺兰山东麓银川段晚霜冻期间日最低气温空间插值研究 被引量:1
10
作者 魏建宁 姜琳琳 +2 位作者 郭晓雷 张磊 李浩 《干旱气象》 2025年第2期321-328,共8页
贺兰山东麓春季气温起伏大,酿酒葡萄易遭受晚霜冻影响,农业气象服务工作中越来越迫切需要针对酿酒葡萄种植区域复杂地形进行日最低气温的精确插值,坡面回归方程插值模型(Parameter-elevation Regression on Independent Slopes Model,PR... 贺兰山东麓春季气温起伏大,酿酒葡萄易遭受晚霜冻影响,农业气象服务工作中越来越迫切需要针对酿酒葡萄种植区域复杂地形进行日最低气温的精确插值,坡面回归方程插值模型(Parameter-elevation Regression on Independent Slopes Model,PRISM)一定程度上满足了这种需求。基于2022—2023年银川市269个气象站的日最低气温和高程数据,利用PRISM对贺兰山东麓银川段酿酒葡萄晚霜冻期间的日最低气温进行插值;为验证PRISM插值的适用性,选取银川市酿酒葡萄种植区、贺兰山东麓银川段沿山附近区域、银川平缓区域的气象站作为验证站,使用反距离加权法(Inverse Distance Weighted,IDW)、样条函数法(Spline)、普通克里金法(Ordinary Kriging,OK)3种常用的插值方法作为对比。结果表明:酿酒葡萄种植区插值效果PRISM最好,然后依次是IDW、Spline,OK最差;贺兰山东麓沿山区域插值效果PRISM最好,接着依次是IDW、OK、Spline;平缓地区PRISM的插值效果较差;综合3个区域的插值效果PRISM最好,接着是IDW、OK、Spline。PRISM在贺兰山东麓银川段晚霜冻期间日最低气温插值的适用性最好。 展开更多
关键词 酿酒葡萄 prism 晚霜冻
在线阅读 下载PDF
Smart Gas Sensors:Recent Developments and Future Prospective 被引量:2
11
作者 Boyang Zong Shufang Wu +3 位作者 Yuehong Yang Qiuju Li Tian Tao Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期55-86,共32页
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart... Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living. 展开更多
关键词 Smart gas sensor Electronic sensor Optoelectronic sensor Flexible and wearable sensor Artificial intelligence
在线阅读 下载PDF
An Artificial Intelligence‑Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System 被引量:1
12
作者 Yan Dong Wenzheng An +1 位作者 Zihu Wang Dongzhi Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期217-231,共15页
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal... The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets. 展开更多
关键词 Mechanoluminescent Strain sensor FLEXIBLE Deep learning WIRELESS
在线阅读 下载PDF
Self-assembly of a quadrangular prismatic covalent cage templated by zinc ions:A selective fluorescent sensor for palladium ions
13
作者 Ya-Liang Lai Hao-Jie Zhang +5 位作者 Juan Su Xue-Zhi Wang Dong Luo Jia-Xing Liu Xiao-Ping Zhou Dan Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期541-544,共4页
Herein we report a covalent cage TPE-Zn_(4)based on a tetraphenylethylene molecule via subcomponent self-assembly,which is templated by zinc ions.TPE-Zn_(4)features a quadrangular prismatic cage structure,which is cha... Herein we report a covalent cage TPE-Zn_(4)based on a tetraphenylethylene molecule via subcomponent self-assembly,which is templated by zinc ions.TPE-Zn_(4)features a quadrangular prismatic cage structure,which is characterized by NMR,mass spectrum,and single-crystal X-ray diffractions.TPE-Zn_(4)emitted orange fluorescence(λ_(em)=620 nm)in DMSO solution under the irradiation of UV light(λ_(ex)=395 nm)and can be applied as a fluorescence sensor for selectively detecting Pd^(2+).The fluorescence of TPE-Zn_(4)was quenched by Pd^(2+)in DMSO solution,and a very low detection limit of 62.3 n M was achieved.Mechanism studies reveal that the Pd^(2+)can replace the Zn^(2+),and the heavy atom effect and chelation-enhanced quenching effect between the Pd^(2+)and the cage probably cause the fluorescence quenching. 展开更多
关键词 Subcomponent self-assembly Covalent cage Fluorescence sensor Detection of palladium ions PHOTOLUMINESCENCE
原文传递
Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems 被引量:2
14
作者 Haihua Wang Mingjian Zhou +5 位作者 Xiaolong Jia Hualong Wei Zhenjie Hu Wei Li Qiumeng Chen Lei Wang 《Journal of Semiconductors》 2025年第1期179-192,共14页
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a... Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements. 展开更多
关键词 sensor multimodal sensors machine learning deep learning intelligent system
在线阅读 下载PDF
Utilizing On-the-Go Soil Sensors to Explore Correlations between Electrical Conductivity, Soil Reflectance, Slope, and Elevation of Mississippi Farm Soils 被引量:1
15
作者 Reginald S. Fletcher 《Agricultural Sciences》 2025年第1期112-122,共11页
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m... Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites. 展开更多
关键词 Mobile Soil sensors NEAR-INFRARED Correlation Nonlinear
在线阅读 下载PDF
Research of NOx Sensors Performance Test 被引量:1
16
作者 Zhengang Zhang Zhonggang Tang +3 位作者 Wei Gao Li Liu Cong Wang Hourui Sun 《Journal of Materials Science and Chemical Engineering》 2025年第2期23-30,共8页
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec... NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly. 展开更多
关键词 NOx sensors FUNCTION Performance Test Basic Principle
在线阅读 下载PDF
Force and impulse multi-sensor based on flexible gate dielectric field effect transistor
17
作者 Chao Tan Junling Lü +3 位作者 Chunchi Zhang Dong Liang Lei Yang Zegao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期214-220,共7页
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ... Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months. 展开更多
关键词 flexible gate dielectric transistor force sensor impulse sensor force sensor array
在线阅读 下载PDF
Double enzyme mimetic activities of multifunctional Ag nanoparticle-decorated Co_(3)V_(2)O_(8)hollow hexagonal prismatic pencils for application in colorimetric sensors and disinfection
18
作者 Ying Gao Peng Ju +4 位作者 Yu Zhang Yuxin Zhang Xiaofan Zhai Jizhou Duan Baorong Hou 《Nano Materials Science》 EI CAS CSCD 2024年第2期244-255,共12页
Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ... Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability. 展开更多
关键词 Co_(3)V_(2)O_(8) Ag NPs Enzyme mimetic Colorimetric sensor DISINFECTION
在线阅读 下载PDF
Free Gas Accumulation System in the Makran Accretionary Prism 被引量:1
19
作者 LIAO Jing LIANG Jie +3 位作者 ZHAO Chen WANG Xiaojie GONG Jianming SYED Waseem Haider 《Journal of Ocean University of China》 2025年第6期1519-1533,共15页
The Makran Accretionary Prism is one of the largest accretionary prisms in the world and hosts substantial natural gas hydrate resources.However,research on the distribution characteristics and accumulation mechanisms... The Makran Accretionary Prism is one of the largest accretionary prisms in the world and hosts substantial natural gas hydrate resources.However,research on the distribution characteristics and accumulation mechanisms of free gas remains limited.This study identifies structural elements associated with free gas,such as thrust faults,piggyback basins,unconformities,and décollements,through detailed interpretation of newly acquired seismic data.Free gas reservoirs within piggyback basins are located in the folded zone of the accretionary prism,whereas unconformity-type and horizontal sandstone-type free gas reservoirs are identified in undeformed areas.In the folded zone,décollement,thrust faults,and permeable sand layers act as primary migration pathways for free gas,which accumulates in turbidite sands beneath bottom simulating reflectors(BSRs)in piggyback basins.In the undeformed zone,free gas migrates along décollements and thrust faults into horizontal sandstones,where substantial accumulations are found near unconformities below BSRs.The distribution of free gas reservoirs across the study area is extensive and diverse.This study is the first to document unconformity-type and horizontal sandstone-type free gas reservoirs in the undeformed zone,highlighting their considerable resource potential.The findings are of substantial value for oil and gas exploration at the front of the accretionary prism and provide important theoretical and practical insights into natural gas accumulation systems along active continental margins. 展开更多
关键词 Makran Accretionary prism piggyback basin BSR free gas UNCONFORMITY décollement
在线阅读 下载PDF
Integration of AI with artificial sensory systems for multidimensional intelligent augmentation 被引量:1
20
作者 Changyu Tian Youngwook Cho +3 位作者 Youngho Song Seongcheol Park Inho Kim Soo-Yeon Cho 《International Journal of Extreme Manufacturing》 2025年第4期35-54,共20页
Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense in... Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense into user-relevant information,yet conventional signal processing methods struggle with the massive scale,noise,and artificial sensory systems characteristics of data generated by artificial sensory devices.Integrating artificial intelligence(AI)is essential for addressing these challenges and enhancing the performance of artificial sensory systems,making it a rapidly growing area of research in recent years.However,no studies have systematically categorized the output functions of these systems or analyzed the associated AI algorithms and data processing methods.In this review,we present a systematic overview of the latest AI techniques aimed at enhancing the cognitive capabilities of artificial sensory systems replicating the five human senses:touch,taste,vision,smell,and hearing.We categorize the AI-enabled capabilities of artificial sensory systems into four key areas:cognitive simulation,perceptual enhancement,adaptive adjustment,and early warning.We introduce specialized AI algorithms and raw data processing methods for each function,designed to enhance and optimize sensing performance.Finally,we offer a perspective on the future of AI-integrated artificial sensory systems,highlighting technical challenges and potential real-world application scenarios for further innovation.Integration of AI with artificial sensory systems will enable advanced multimodal perception,real-time learning,and predictive capabilities.This will drive precise environmental adaptation and personalized feedback,ultimately positioning these systems as foundational technologies in smart healthcare,agriculture,and automation. 展开更多
关键词 artificialsensorysystem artificial intelligence sensor deep learning signal processing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部