期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
行ALNQD阵列加权和最大值的完全收敛性 被引量:1
1
作者 陆冬梅 高瑞梅 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第6期1323-1327,共5页
利用渐近线性坐标负相依(ALNQD)序列最大值的矩不等式,得到了行为ALNQD阵列加权和最大值的完全收敛性定理,并利用该定理证明了ALNQD序列加权和最大值的Marcinkiewicz-Zygmund型强大数定律.
关键词 alnqd阵列 完全收敛性 加权和 Marcinkiewicz-Zygmund型强大数定律
在线阅读 下载PDF
ALNQD序列密度函数核估计的强相合性 被引量:3
2
作者 陆冬梅 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第6期1461-1464,共4页
设{X_n,n≥1}为一同分布的渐近线性负相依(ALNQD)序列,f_n(x)为密度函数f(x)基于样本X_1,…,X_n的核估计.在适当的假设条件下,利用ALNQD序列的矩不等式和Borel-Cantelli引理,证明核密度估计的强相合性、一致强相合性及r阶相合性.
关键词 alnqd序列 核估计 (一致)强相合性 r阶相合性
在线阅读 下载PDF
由ALNQD序列生成移动平均过程精确渐近性的一般结果 被引量:2
3
作者 关丽红 赵亚男 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第4期623-628,共6页
设{εk,-∞<k<∞}为零均值的平稳渐近线性坐标负相依(ALNQD)序列.令移动平均过程{Xt=∞∑k=0akεt-k,t≥1},其中{ak,k≥0}为绝对可和的实数序列.利用ALNQD序列的弱收敛定理和矩不等式,对于边界函数和拟权函数得到了移动平均过程... 设{εk,-∞<k<∞}为零均值的平稳渐近线性坐标负相依(ALNQD)序列.令移动平均过程{Xt=∞∑k=0akεt-k,t≥1},其中{ak,k≥0}为绝对可和的实数序列.利用ALNQD序列的弱收敛定理和矩不等式,对于边界函数和拟权函数得到了移动平均过程部分和以及部分和最大值矩完全收敛性精确渐近性的一般形式. 展开更多
关键词 渐近线性坐标负相依 移动平均过程 矩完全收敛性 精确渐近性 一般结果
在线阅读 下载PDF
Precise Asymptotics in the Law of Large Numbers and the Law of Iterated Logarithm of Moving-Average Process Generated by ALNQD Sequences
4
作者 张勇 赵世舜 董志山 《Northeastern Mathematical Journal》 CSCD 2007年第6期549-562,共14页
In this paper, we discuss the precise asymptotics of moving-average process Xt =∞∑j=0 ajEt-j under some suitable conditions, where {εt, t∈ Z} is a sequence j=0 of stationary ALNQD random variables with mean zeros... In this paper, we discuss the precise asymptotics of moving-average process Xt =∞∑j=0 ajEt-j under some suitable conditions, where {εt, t∈ Z} is a sequence j=0 of stationary ALNQD random variables with mean zeros and finite variances. 展开更多
关键词 alnqd random variable moving-average process precise asymptotic2000 MR subject classification: 60F15
在线阅读 下载PDF
由渐近线性坐标负相依产生的平稳线性过程的泛函中心极限定理 被引量:3
5
作者 李云霞 《浙江大学学报(理学版)》 CAS CSCD 2003年第5期495-498,共4页
对平稳线性过程Xt=∑∞j=0ajεt-j进行讨论,其中{εt;t∈Z+}为平稳的渐近线性坐标负相依(ALNQD)随机变量序列,满足Eεt=0,Eε2t<∞,以及对某个δ>0有supt∈Z+E|εt|2+δ<∞成立,且常数aj满足∑∞j=0|aj|<∞,得到了一个泛函... 对平稳线性过程Xt=∑∞j=0ajεt-j进行讨论,其中{εt;t∈Z+}为平稳的渐近线性坐标负相依(ALNQD)随机变量序列,满足Eεt=0,Eε2t<∞,以及对某个δ>0有supt∈Z+E|εt|2+δ<∞成立,且常数aj满足∑∞j=0|aj|<∞,得到了一个泛函中心极限定理. 展开更多
关键词 泛函中心极限定理 平稳线性过程 渐近线性坐标负相依 随机变量序列 Weiner过程
在线阅读 下载PDF
RATE OF CONVERGENCE FOR MULTIPLE CHANGEPOINTS ESTIMATION OF MOVING-AVERAGE PROCESSES
6
作者 Li Yunxia Zhang Lixin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第4期416-422,共7页
In this paper, the least square estimator in the problem of multiple change points estimation is studied. Here, the moving-average processes of ALNQD sequence in the mean shifts are discussed. When the number of chang... In this paper, the least square estimator in the problem of multiple change points estimation is studied. Here, the moving-average processes of ALNQD sequence in the mean shifts are discussed. When the number of change points is known, the rate of convergence of change-points estimation is derived. The result is also true for p-mixing, φ-mixing, a-mixing, associated and negatively associated sequences under suitable conditions. 展开更多
关键词 mean shift multiple change points moving-average process alnqd least square.
在线阅读 下载PDF
Change-point Estimation of a Mean Shift in Moving-average Processes Under Dependence Assumptions 被引量:4
7
作者 Yun-xia Li 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第4期615-626,共12页
In this paper we discuss the least-square estimator of the unknown change point in a mean shift for moving-average processes of ALNQD sequence. The consistency and the rate of convergence for the estimated change poin... In this paper we discuss the least-square estimator of the unknown change point in a mean shift for moving-average processes of ALNQD sequence. The consistency and the rate of convergence for the estimated change point are established. The asymptotic distribution for the change point estimator is obtained. The results are also true for ρ-mixing, φ-mixing, α-mixing sequences under suitable conditions. These results extend those of Bai, who studied the mean shift point of a linear process of i.i.d, variables, and the condition ∑j=0^∞j|aj| 〈 ∞ in Bai is weakened to ∑j=0^∞|aj|〈∞. 展开更多
关键词 Mean shift moving-average process change point alnqd rate of convergence
原文传递
THE LIMIT THEOREM FOR DEPENDENT RANDOM VARIABLES WITH APPLICATIONS TO AUTOREGRESSION MODELS
8
作者 Yong ZHANG Xiaoyun YANG Zhishan DONG Dehui WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期565-579,共15页
This paper studies the autoregression models of order one, in a general time series setting that allows for weakly dependent innovations. Let {Xt} be a linear process defined by Xt =∑k=0^∞ψ kεt-k, where {ψk, k ≥... This paper studies the autoregression models of order one, in a general time series setting that allows for weakly dependent innovations. Let {Xt} be a linear process defined by Xt =∑k=0^∞ψ kεt-k, where {ψk, k ≥ 0} is a sequence of real numbers and {εk, k = 0, ±1, ±2,...} is a sequence of random variables. Two results are proved in this paper. In the first result, assuming that {εk, k ≥ 1} is a sequence of asymptotically linear negative quadrant dependent (ALNQD) random variables, the authors find the limiting distributions of the least squares estimator and the associated regression t statistic. It is interesting that the limiting distributions are similar to the one found in earlier work under the assumption of i.i.d, innovations. In the second result the authors prove that the least squares estimator is not a strong consistency estimator of the autoregressive parameter a when {εk, k ≥ 1} is a sequence of negatively associated (NA) random variables, and ψ0 = 1, ψk = 0, k ≥ 1. 展开更多
关键词 alnqd autoregression models least squares estimator negatively associated unit root test.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部