Surface albedo,as one of the important properties of the underlying surface,has a significant impact on the surface energy balance in cold regions.However,due to the complexity of the factors affecting surface albedo,...Surface albedo,as one of the important properties of the underlying surface,has a significant impact on the surface energy balance in cold regions.However,due to the complexity of the factors affecting surface albedo,existing calculations still contain inaccuracies.Therefore,this study conducted surface albedo experiments on loess with different water contents and temperatures.By analyzing the surface albedo measurements of samples with varying temperature and water content levels,as well as the soil freezing characteristic curve(SFCC)and soil-water characteristic curve(SWCC)of loess,the study explores the influence of soil temperature and water content on the surface albedo of loess.The results indicate that both the temperature and water content of loess jointly affect surface albedo.During the process of albedo change,there exists a water content threshold that alters the trend of surface albedo.Soil temperature influences surface albedo by affecting the content of pore ice and liquid water within the soil.When the water content of loess is relatively low,the surface albedo decreases as the unfrozen water content decreases.However,this trend changes as the water content of loess increases.Additionally,a decrease in soil temperature lowers the moisture content threshold during the changes in surface albedo.This study provides a reference for exploring and determining the surface energy balance in cold regions under the background of warm and humid climates,as well as for establishing thermal calculation boundaries.展开更多
地表反照率直接影响地表辐射平衡,进而改变当地温度(2m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF(Weather Research and Forecasting)模式的静态地表反照率对中国大陆温度模拟...地表反照率直接影响地表辐射平衡,进而改变当地温度(2m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF(Weather Research and Forecasting)模式的静态地表反照率对中国大陆温度模拟结果的影响,本文进行了两组为期6年(2002-2007年)的连续积分试验:控制试验(CT试验)采用短波波段地表反照率,取自WRF模式推荐的地表参数数据集;敏感试验(MD试验)采用分波段的(可见光和近红外)地表反照率,取自MODIS BRDF/Albedo数据产品。试验结果表明,CT试验能够模拟中国温度的基本空间格局,但是模拟温度相对于观测温度有明显偏差,青藏高原南部的模拟温度偏低(负偏差),最大偏低幅度为1.03℃,出现在秋季,东部地区的模拟温度偏高(正偏差),最大偏高幅度达3.4℃,出现在春季;MD试验模拟结果的正、负偏差格局与CT试验基本相似,但是与CT试验相比,MD试验模拟的青藏高原南部温度的负偏差更大,最大为1.32℃,而模拟的东部地区温度的正偏差明显减小,最大为2.97℃,这说明MD试验比CT试验模拟的温度普遍偏低。在青藏高原,这主要归因于MD试验比CT试验的地表反照率大,使得地表净辐射少,地表感热少,致使温度偏低;在中国东部的黄淮海至江南丘陵区,这主要归因于MD试验中北方蒙古高原的地表反照率比CT试验的大,使得MD试验中该地区的地表净辐射少,地表感热少,温度低,然后通过南下冷平流过程致使位于其下游的黄淮海至江南丘陵区温度降低。展开更多
[Objective] Temporal and spatial variation of surface albedo in Tibetan Plateau were studied in our paper.[Method] Based on NOAA/AVHRR data,different algorithms were used to retrieve surface albedo in Tibetan Plateau,...[Objective] Temporal and spatial variation of surface albedo in Tibetan Plateau were studied in our paper.[Method] Based on NOAA/AVHRR data,different algorithms were used to retrieve surface albedo in Tibetan Plateau,and it showed that the result of Stroeve was mostly close to observed data.Based on retrieval algorithm from Stroeve,the spatial distribution of surface albedo in Tibetan Plateau was obtained by means of NOAA/AVHRR data in 1982-2000.[Result] The distribution of annual mean surface albedo in Tibetan Plateau was identical with that of geographical zone in plateau area;annual mean surface albedo in plateau area showed slight decrease trend which was different in various regions;monthly surface albedo in plateau area had obviously zonal distribution and changed with time evidently.[Conclusion] Our study will be helpful to improving the parameterization scheme of surface albedo in climate model,revealing the internal mechanism of local and regional climate change and enhancing the level of long-term climate forecast.展开更多
The surface albedo which is affected by the earth surface coverage or other surface characteristics is one of the important factors impacting remote sensing image information and therefore it can be calculated by inte...The surface albedo which is affected by the earth surface coverage or other surface characteristics is one of the important factors impacting remote sensing image information and therefore it can be calculated by integrating land coverage types with information of remote sensing images.Horqin sand land which was taken as an experimental area for study on Landsat-TM topography and atmospheric correction,then the Landsat-TM data inversion formula established by Liang was used to calculate the experimental zone albedo map;correlation analysis was performed to the surface albedo map and the land-use maps which was acquired by supervision and classification.The results revealed significant relations between land-use types and the surface albedo of study area.Additionally,the surface albedo and NDVI of the study area were statistically analyzed to obtain the study area's surface albedo and NDVI dependent equation.展开更多
Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to...Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau.展开更多
Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations...Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.展开更多
基金supported by the National Natural Science Foundation of China(42261028)the Chinese Academy of Sciences“Light of West China”Program for Western Young Scholars(23JR6KA027)+3 种基金the Science Foundation for Distinguished Young Scholars of Gansu Province(24JRRA167)the Key Research and Development Program on Ecological Civilization Construction of Gansu Province(25YFFA012)Gansu Provincial Science and Technology Plan Fund Project(24CXGA063)Scientific Research Projects on Ecological and Environmental Protection in Heilongjiang Province in 2023(Grant No.:HST2023ZR005)。
文摘Surface albedo,as one of the important properties of the underlying surface,has a significant impact on the surface energy balance in cold regions.However,due to the complexity of the factors affecting surface albedo,existing calculations still contain inaccuracies.Therefore,this study conducted surface albedo experiments on loess with different water contents and temperatures.By analyzing the surface albedo measurements of samples with varying temperature and water content levels,as well as the soil freezing characteristic curve(SFCC)and soil-water characteristic curve(SWCC)of loess,the study explores the influence of soil temperature and water content on the surface albedo of loess.The results indicate that both the temperature and water content of loess jointly affect surface albedo.During the process of albedo change,there exists a water content threshold that alters the trend of surface albedo.Soil temperature influences surface albedo by affecting the content of pore ice and liquid water within the soil.When the water content of loess is relatively low,the surface albedo decreases as the unfrozen water content decreases.However,this trend changes as the water content of loess increases.Additionally,a decrease in soil temperature lowers the moisture content threshold during the changes in surface albedo.This study provides a reference for exploring and determining the surface energy balance in cold regions under the background of warm and humid climates,as well as for establishing thermal calculation boundaries.
文摘地表反照率直接影响地表辐射平衡,进而改变当地温度(2m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF(Weather Research and Forecasting)模式的静态地表反照率对中国大陆温度模拟结果的影响,本文进行了两组为期6年(2002-2007年)的连续积分试验:控制试验(CT试验)采用短波波段地表反照率,取自WRF模式推荐的地表参数数据集;敏感试验(MD试验)采用分波段的(可见光和近红外)地表反照率,取自MODIS BRDF/Albedo数据产品。试验结果表明,CT试验能够模拟中国温度的基本空间格局,但是模拟温度相对于观测温度有明显偏差,青藏高原南部的模拟温度偏低(负偏差),最大偏低幅度为1.03℃,出现在秋季,东部地区的模拟温度偏高(正偏差),最大偏高幅度达3.4℃,出现在春季;MD试验模拟结果的正、负偏差格局与CT试验基本相似,但是与CT试验相比,MD试验模拟的青藏高原南部温度的负偏差更大,最大为1.32℃,而模拟的东部地区温度的正偏差明显减小,最大为2.97℃,这说明MD试验比CT试验模拟的温度普遍偏低。在青藏高原,这主要归因于MD试验比CT试验的地表反照率大,使得地表净辐射少,地表感热少,致使温度偏低;在中国东部的黄淮海至江南丘陵区,这主要归因于MD试验中北方蒙古高原的地表反照率比CT试验的大,使得MD试验中该地区的地表净辐射少,地表感热少,温度低,然后通过南下冷平流过程致使位于其下游的黄淮海至江南丘陵区温度降低。
基金Supported by Plateau Meteorology Open Laboratory Foundation of Institute of Plateau Meteorology,CMA,Chengdu(LPM2009018 and BROP201001)
文摘[Objective] Temporal and spatial variation of surface albedo in Tibetan Plateau were studied in our paper.[Method] Based on NOAA/AVHRR data,different algorithms were used to retrieve surface albedo in Tibetan Plateau,and it showed that the result of Stroeve was mostly close to observed data.Based on retrieval algorithm from Stroeve,the spatial distribution of surface albedo in Tibetan Plateau was obtained by means of NOAA/AVHRR data in 1982-2000.[Result] The distribution of annual mean surface albedo in Tibetan Plateau was identical with that of geographical zone in plateau area;annual mean surface albedo in plateau area showed slight decrease trend which was different in various regions;monthly surface albedo in plateau area had obviously zonal distribution and changed with time evidently.[Conclusion] Our study will be helpful to improving the parameterization scheme of surface albedo in climate model,revealing the internal mechanism of local and regional climate change and enhancing the level of long-term climate forecast.
基金Supported by Institute of Atmospheric Environment CMA,Shenyang
文摘The surface albedo which is affected by the earth surface coverage or other surface characteristics is one of the important factors impacting remote sensing image information and therefore it can be calculated by integrating land coverage types with information of remote sensing images.Horqin sand land which was taken as an experimental area for study on Landsat-TM topography and atmospheric correction,then the Landsat-TM data inversion formula established by Liang was used to calculate the experimental zone albedo map;correlation analysis was performed to the surface albedo map and the land-use maps which was acquired by supervision and classification.The results revealed significant relations between land-use types and the surface albedo of study area.Additionally,the surface albedo and NDVI of the study area were statistically analyzed to obtain the study area's surface albedo and NDVI dependent equation.
基金supported bythe National Natural Science Foundation of China un-der Grants Nos40725015 and 40633017the Na-tional Basic Research Program of China under Grant No2006CB400501
文摘Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau.
基金the National Basic Research Program of China (973Program, 2006CB500401).
文摘Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.