The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments...The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the im...This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the impact of alumina particles, which are hard abrasives with irregular and angular shapes. Different characterization techniques were applied to gain a better understanding of alumina. For instance, particle size distribution was obtained using the Analysette 28 Image Sizer and the particle size was between 300 - 400 µm. SEM and EDS analysis were used to know the morphology and chemical composition of both the abrasive particles and AISI 304 stainless steel. Additionally, mechanical properties values such as the hardness and Young’s modulus of AISI 304 steel were attained using a Berkovich indenter (model TTX-NHT, CSM Instruments). On the other hand, two tests were carried out for each impact angle used, 30˚, 45˚, 60˚ and 90˚, with a particle velocity of 24 ± 2 m/s and an abrasive flow rate of 63 ± 0.5 g/min, employing a test rig based on ASTM G76-95 standard. SEM images using two detectors, Backscattered Electron Detector (BED) and Low Electron Detector (LED), were employed to identify the wear mechanisms on the AISI 304 eroded surfaces at 30˚ and 90˚. Finally, the erosion rates of AISI 304 compared to those results reached by AISI 1018 steel and AISI 420 stainless steel tested under identical conditions in previous works.展开更多
The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between...The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52075048,51675058,12232004)Hunan Provincial Excellent Youth Project of the Education Department(Grant No.21B0304)+2 种基金Natural Science Foundation of Hunan Province(Grant No.2023JJ30025)Science and Technology Innovation Program of Hunan Province(Grant No.2023RC1058)Scientific Research Innovation Project for Graduate Student of Changsha University of Science and Technology(Grant No.CLSJCX22096)。
文摘The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
文摘This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the impact of alumina particles, which are hard abrasives with irregular and angular shapes. Different characterization techniques were applied to gain a better understanding of alumina. For instance, particle size distribution was obtained using the Analysette 28 Image Sizer and the particle size was between 300 - 400 µm. SEM and EDS analysis were used to know the morphology and chemical composition of both the abrasive particles and AISI 304 stainless steel. Additionally, mechanical properties values such as the hardness and Young’s modulus of AISI 304 steel were attained using a Berkovich indenter (model TTX-NHT, CSM Instruments). On the other hand, two tests were carried out for each impact angle used, 30˚, 45˚, 60˚ and 90˚, with a particle velocity of 24 ± 2 m/s and an abrasive flow rate of 63 ± 0.5 g/min, employing a test rig based on ASTM G76-95 standard. SEM images using two detectors, Backscattered Electron Detector (BED) and Low Electron Detector (LED), were employed to identify the wear mechanisms on the AISI 304 eroded surfaces at 30˚ and 90˚. Finally, the erosion rates of AISI 304 compared to those results reached by AISI 1018 steel and AISI 420 stainless steel tested under identical conditions in previous works.
基金Project (LSL-1310) supported by the Open Project of State Key Laboratory of Solid Lubrication,Collaborative Innovation Center of Nonferrous Metals of Henan Province,ChinaProject (51171059) supported by the National Natural Science Foundation of China
文摘The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.