High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship i...The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system(AIS).The research also focuses on the integration of shipping database,AIS data,and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines.A simple concept is used in the development of this prototype,which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates(longitude/latitude)as detected by AIS.Using such information,we can then build an early warning system(EWS)relayed through short message service(SMS),email,or other means when the ship enters the restricted and exclusion zone of platforms and pipelines.The ship inspection system is developed by combining several attributes.Then,decision analysis software is employed to prioritize the vessel’s four attributes,including ship age,ship type,classification,and flag state.Results show that the EWS can increase the safety level of offshore platforms and pipelines,as well as the efficient use of patrol boats in monitoring the safety of the facilities.Meanwhile,ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.展开更多
Sea fog is a disastrous weather phenomenon,posing a risk to the safety of maritime transportation.Dense sea fogs reduce visibility at sea and have frequently caused ship collisions.This study used a geographically wei...Sea fog is a disastrous weather phenomenon,posing a risk to the safety of maritime transportation.Dense sea fogs reduce visibility at sea and have frequently caused ship collisions.This study used a geographically weighted regression(GWR)model to explore the spatial non-stationarity of near-miss collision risk,as detected by a vessel conflict ranking operator(VCRO)model from automatic identification system(AIS)data under the influence of sea fog in the Bohai Sea.Sea fog was identified by a machine learning method that was derived from Himawari-8 satellite data.The spatial distributions of near-miss collision risk,sea fog,and the parameters of GWR were mapped.The results showed that sea fog and near-miss collision risk have specific spatial distribution patterns in the Bohai Sea,in which near-miss collision risk in the fog season is significantly higher than that outside the fog season,especially in the northeast(the sea area near Yingkou Port and Bayuquan Port)and the southeast(the sea area near Yantai Port).GWR outputs further indicated a significant correlation between near-miss collision risk and sea fog in fog season,with higher R-squared(0.890 in fog season,2018),than outside the fog season(0.723 in non-fog season,2018).GWR results revealed spatial non-stationarity in the relationships between-near miss collision risk and sea fog and that the significance of these relationships varied locally.Dividing the specific navigation area made it possible to verify that sea fog has a positive impact on near-miss collision risk.展开更多
Recognition of ship traffic patterns can provide insights into the rules of navigation,maneuvering,and collision avoidance for ships at sea.This is essential for ensuring safe navigation at sea and improving navigatio...Recognition of ship traffic patterns can provide insights into the rules of navigation,maneuvering,and collision avoidance for ships at sea.This is essential for ensuring safe navigation at sea and improving navigational efficiency.With the popularization of the Automatic Identification System(AIS),numerous studies utilized ship trajectories to identify maritime traffic patterns.However,the current research focuses on the spatiotemporal behavioral feature clustering of ship trajectory points or segments while lacking consideration for multiple factors that influence ship behavior,such as ship static and maritime geospatial features,resulting in insufficient precision in ship traffic pattern recognition.This study proposes a ship traffic pattern recognition method that considers multi-attribute trajectory similarity(STPMTS),which considers ship static feature,dynamic feature,port geospatial feature,as well as semantic relationships between these features.First,A ship trajectory reconstruction method based on grid compression was introduced to eliminate redundant data and enhance the efficiency of trajectory similarity measurements.Subsequently,to quantify the degree of similarity of ship trajectories,a trajectory similarity measurement method is proposed that combines ship static and dynamic information with port geospatial features.Furthermore,trajectory clustering with hierarchical methods was applied based on the trajectory similarity matrix for dividing trajectories into different clusters.The quality of the similarity measurement results was evaluated by quality criterion to recognize the optimal number of ship traffic patterns.Finally,the effectiveness of the proposed method was verified using actual port ship trajectory data from the Tianjin Port of China,ranging from September to November 2016.Compared with other methods,the proposed method exhibits significant advantages in identifying traffic patterns of ships entering and leaving the port in terms of geometric features,dynamic features,and adherence to navigation rules.This study could serve as an inspiration for a comprehensive exploration of maritime transportation knowledge from multiple perspectives.展开更多
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
文摘The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system(AIS).The research also focuses on the integration of shipping database,AIS data,and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines.A simple concept is used in the development of this prototype,which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates(longitude/latitude)as detected by AIS.Using such information,we can then build an early warning system(EWS)relayed through short message service(SMS),email,or other means when the ship enters the restricted and exclusion zone of platforms and pipelines.The ship inspection system is developed by combining several attributes.Then,decision analysis software is employed to prioritize the vessel’s four attributes,including ship age,ship type,classification,and flag state.Results show that the EWS can increase the safety level of offshore platforms and pipelines,as well as the efficient use of patrol boats in monitoring the safety of the facilities.Meanwhile,ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.
文摘Sea fog is a disastrous weather phenomenon,posing a risk to the safety of maritime transportation.Dense sea fogs reduce visibility at sea and have frequently caused ship collisions.This study used a geographically weighted regression(GWR)model to explore the spatial non-stationarity of near-miss collision risk,as detected by a vessel conflict ranking operator(VCRO)model from automatic identification system(AIS)data under the influence of sea fog in the Bohai Sea.Sea fog was identified by a machine learning method that was derived from Himawari-8 satellite data.The spatial distributions of near-miss collision risk,sea fog,and the parameters of GWR were mapped.The results showed that sea fog and near-miss collision risk have specific spatial distribution patterns in the Bohai Sea,in which near-miss collision risk in the fog season is significantly higher than that outside the fog season,especially in the northeast(the sea area near Yingkou Port and Bayuquan Port)and the southeast(the sea area near Yantai Port).GWR outputs further indicated a significant correlation between near-miss collision risk and sea fog in fog season,with higher R-squared(0.890 in fog season,2018),than outside the fog season(0.723 in non-fog season,2018).GWR results revealed spatial non-stationarity in the relationships between-near miss collision risk and sea fog and that the significance of these relationships varied locally.Dividing the specific navigation area made it possible to verify that sea fog has a positive impact on near-miss collision risk.
基金supported by the National Natural Science Foundation of China[grant number 52371359]the Dalian Science and Technology Innovation Fund[grant number 2022JJ12GX015].
文摘Recognition of ship traffic patterns can provide insights into the rules of navigation,maneuvering,and collision avoidance for ships at sea.This is essential for ensuring safe navigation at sea and improving navigational efficiency.With the popularization of the Automatic Identification System(AIS),numerous studies utilized ship trajectories to identify maritime traffic patterns.However,the current research focuses on the spatiotemporal behavioral feature clustering of ship trajectory points or segments while lacking consideration for multiple factors that influence ship behavior,such as ship static and maritime geospatial features,resulting in insufficient precision in ship traffic pattern recognition.This study proposes a ship traffic pattern recognition method that considers multi-attribute trajectory similarity(STPMTS),which considers ship static feature,dynamic feature,port geospatial feature,as well as semantic relationships between these features.First,A ship trajectory reconstruction method based on grid compression was introduced to eliminate redundant data and enhance the efficiency of trajectory similarity measurements.Subsequently,to quantify the degree of similarity of ship trajectories,a trajectory similarity measurement method is proposed that combines ship static and dynamic information with port geospatial features.Furthermore,trajectory clustering with hierarchical methods was applied based on the trajectory similarity matrix for dividing trajectories into different clusters.The quality of the similarity measurement results was evaluated by quality criterion to recognize the optimal number of ship traffic patterns.Finally,the effectiveness of the proposed method was verified using actual port ship trajectory data from the Tianjin Port of China,ranging from September to November 2016.Compared with other methods,the proposed method exhibits significant advantages in identifying traffic patterns of ships entering and leaving the port in terms of geometric features,dynamic features,and adherence to navigation rules.This study could serve as an inspiration for a comprehensive exploration of maritime transportation knowledge from multiple perspectives.