This work presents a simulation analysis using a multi-objective evolutionary algorithm for the thermo-hydraulic behavior of staggered heat sinks whose fins have NACA 0040 airfoil profile.The results were compared wit...This work presents a simulation analysis using a multi-objective evolutionary algorithm for the thermo-hydraulic behavior of staggered heat sinks whose fins have NACA 0040 airfoil profile.The results were compared with a conventional pin fin heat sink with a circular profile.This study searched for the best thermo-hydraulic performance by translational and rotational positioning of the fins.It is worth mentioning that this work was carried out in two stages.In the first stage,the thermo-hydraulic behavior of the heat sink was studied moving the location of the upper array above the X-axis from to 2.25 mm and above the Y-axis from to 1.275 mm.The second stage examined-2.25-1.55the effects of fin rotation considering the results found in stage 1.However,in this second stage,both arrays were free to rotate.For the upper array,the rotation range was-25°to 25° and for the lower array the rotation range was-15° to 15°.It is worth mentioning that both stages were analyzed for a single Reynolds(Re)number value of 13,000.The optimization results using the multi-objective evolutionary algorithm showed that compared to a NACA 0040 heat sink with fixed,unrotated original configuration(C0),the NACA 0040 heat sink with any Position Configuration(PC)did not significantly improve the heat transfer.Then,the results found in the second stage showed that the effect of the rotation of both sets did not influence the increase in pressure drop.However,it was found that with the Optimal Position and Rotation Configuration(PRCoptimal),which is the optimized array from Stage 1(position)then optimized by rotation,there is a slightly higher Performance Evaluation Criterion(PEC)compared to the original C0 configuration by 7%.Finally,the proposed NACA 0040 heat sink with the optimal rotation and position setting(PRCoptimal)was found to have a PEC of 9%compared to a conventional pin fin heat sink.展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between ...Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force.展开更多
A robust optimization design approach of natural laminar airfoils is developed in this paper. First, the non-uniform rational B-splines (NURBS) free form deformation method based on NURBS basis function is introduce...A robust optimization design approach of natural laminar airfoils is developed in this paper. First, the non-uniform rational B-splines (NURBS) free form deformation method based on NURBS basis function is introduced to the airfoil parameterization. Second, aerodynamic characteristics are evaluated by solving Navier-Stokes equations, and theγ-Reθt transition model coupling with shear-stress transport (SST) turbulent model is introduced to simulate boundary layer transition. A numerical simulation of transition flow around NLF0416 airfoil is conducted to test the code. The comparison between numerical simulation results and wind tunnel test data approves the validity and applicability of the present transition model. Third, the optimization system is set up, which uses the separated particle swarm optimization (SPSO) as search algorithm and combines the Kriging models as surrogate model during optimization. The system is applied to carry out robust design about the uncertainty of lift coefficient and Mach number for NASA NLF-0115 airfoil. The data of optimized airfoil aerodynamic characteristics indicates that the optimized airfoil can maintain laminar flow stably in an uncertain range and has a wider range of low drag.展开更多
Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to fla...Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to flapping airfoils.The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation with Spalart-Allmaras(SA)turbulence model.Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case.Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion,with Reynolds number 70,000 and reduced frequency 0.2.As a result,CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμgreater than 0.04,which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer.Besides,typical kinematic and geometric parameters,including the reduced frequency and the positions of the suction and injection slot,are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil.And a variable Cμjet control strategy is proposed to further improve effective propulsive efficiency.Compared with using constant Cμ,an increase of effective propulsive efficiency by22.6%has been achieved by using prescribed variable CμNACA6415-based CFJ airfoil at frequency 0.2.This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles(FMAV).展开更多
Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-d...Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-dimensional problems are so high that it is often too expensive to prepare sufficient samples.Therefore,transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for threedimensional problems.This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings,where the simple swept theory is embedded to improve the prediction accuracy.Two baseline models are investigated:one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry,and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution.Two transfer learning strategies are compared for both baseline models.The transferred models are then tested on complete wings.The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions.Compared to the two baseline models,the transferred models reduce the prediction error by 60%and 80%,respectively.展开更多
In the present work,a parametric numerical study is conducted in order to assess the effect of airfoil cambering on the aerodynamic performance of rigid heaving airfoils.The incompressible Navier-Stokes equations are ...In the present work,a parametric numerical study is conducted in order to assess the effect of airfoil cambering on the aerodynamic performance of rigid heaving airfoils.The incompressible Navier-Stokes equations are solved in their velocity-pressure formulation using a second-order accurate in space and time finite-difference scheme.To tackle the problem of moving boundaries,the governing equations are solved on overlapping structured grids.The numerical simulations are performed at a Reynolds number of Re=1100 and at different values of Strouhal number and reduced frequency.The results obtained show that the airfoil cambering geometric parameter has a strong influence on the average lift coefficient,while it has a smaller impact on the average thrust coefficient and propulsive efficiency of heaving airfoils.展开更多
The objective of this project is to improve the performance of the efficiency, thrust and lift of flapping wings in tandem arrangement. This research investigates the effect of the arrangement of the airfoils in tande...The objective of this project is to improve the performance of the efficiency, thrust and lift of flapping wings in tandem arrangement. This research investigates the effect of the arrangement of the airfoils in tandem on the performance of the airfoils by varying the phase difference and distance between the airfoils. Three flapping configurations from an earlier phase of a research which gives high efficiency, thrust and lift are used in the tandem simulation. It is found all the different flapping configurations show improvement in the efficiency, thrust or lift when the distance between the two airfoils and the phase angle between the heaving positions of the two airfoils are optimal. The average thrust coefficient of the tandem arrangement managed to attain more than twice that of the single one (4.84 vs. 2.05). On the other hand, the average lift coefficient of the tandem arrangement also increased to 4.59, as compared to the original single airfoil value of 3.04. All these results obtained will aid in the design of a better ornithopter with tandem wing arrangement.展开更多
To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turb...To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method.展开更多
The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influen...The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influences the lift performance and flow pattern of flapping airfoils.Firstly, the numerical methods are validated by a NACA0012 airfoil pitching case and a NACA0012 airfoil plunging case. Then, the E377m airfoil which has typical geometric characteristics of the bird-like airfoil is selected as the calculation model to study how phase differences φ1 between surging motion and plunging motion affect the aerodynamic performance of flapping airfoils. The results show that the airfoil with surging motion has comprehensively better lift performance and thrust performance than the airfoil without surging motion when 15°< φ1< 90°. It is demonstrated that surging motion has a powerful ability to improve the aerodynamic performance of flapping airfoil by adjusting φ1. Finally, to further explore how flapping airfoil improves lift performance by considering surging motion, the flapping motions of E377m airfoil with the highest lift coefficient and lift efficiency are obtained through trajectory optimization. The surging motion is removed in the highest lift case and highest lift efficiency case respectively, and the mechanism that surging motion adjusts the aerodynamic force is analyzed in detail by comparing the vortex structure and kinematic parameters. The results of this paper help reveal the aerodynamic mechanism of bird flight and guide the design of Flapping wing Micro Air Vehicles(FMAV).展开更多
A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitu...A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient.展开更多
In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal ...In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal of this study is to gain a better understanding and to find the possible ways for enhancing the aerodynamic efficients. The experimental investigations are carried out in two low-speed wind tunnels. The test models are two dimensional airfoils with different section geometries. Four means of excitations have been used in these experiments. (1) The pitch oscillation of the airfoil high-angle-of-attack situation. (2) The moving surface effects of the airfoil with a leading edge rotating cylinder. (3) Oscillating leading edge flaperon. (4) Small oscillating spoiler located near the leading edge of the airfoil. The lift, drag and pitch moment coefficients are measured in these experiments. But, we will put the emphasis only on the 'dynamic amplifying effects' on aerodynamic lift in this paper. Results obtained indicate that the beneficial aerodynamic effects of section lift increase can be obtained at the high angle of attack near stall regime, as long as the frequency and amplitute of the excitation are appropriately selected.展开更多
In this paper, an efficient multigrid fictitious boundary method (MFBM) coupled with the FEM solver package FEATFLOW was used for the detailed simulation of incompressible viscous flows around one or more moving NAC...In this paper, an efficient multigrid fictitious boundary method (MFBM) coupled with the FEM solver package FEATFLOW was used for the detailed simulation of incompressible viscous flows around one or more moving NACA0012 airfoils. The calculations were carded on a fixed multigrid finite element mesh on which fluid equations were satisfied everywhere, and the airfoils were allowed to move freely through the mesh. The MFBM was employed to treat interactions between the fluid and the airfoils The motion of the airfoils was modeled by Newton-Euler equations. Numerical results of experiments verify that this method provides an efficient way to simulate incompressible viscous flows around moving airfoils.展开更多
Transient aerodynamic characteristics of airfoil are important for the safety of airplanes, the development of helicopter rotors and many other applications of unsteady aerodynamics. For a better understanding of thes...Transient aerodynamic characteristics of airfoil are important for the safety of airplanes, the development of helicopter rotors and many other applications of unsteady aerodynamics. For a better understanding of these phenomena, it is necessary to investigate the simultaneous relation between the characteristics and the flow field. The purpose of the present study is to clarify experimentally the fundamentals of the aerodynamic behaviours associated with stepwise incidence variations from 0 to some certain values, including high angles of attack, of symmetric airfoils at low speeds, Reynolds number being of the order of 104. Temporal variations of surface pressure distribution, lift, drag and . pitching moment, and the observation of the flow field will be discussed.展开更多
Through transformations, the time-dependent boundary condition on the airfoil contour and the boundary condition at infinity are brought fixed to the boundaries of a finite domain. The boundary conditions can thus be ...Through transformations, the time-dependent boundary condition on the airfoil contour and the boundary condition at infinity are brought fixed to the boundaries of a finite domain. The boundary conditions can thus be satisfied exactly without increasing the computational time. The novel scheme is useful for computing transonic, strong disturbance, unsteady flows with high reduced frequencies. The scheme makes use of curvefitted orthogonal meshes and the lattice control technique to obtain the optimal grid distribution. The numerical results are satisfactory.展开更多
One of the key features of Laplace's Equation is the property that allows the equation governing the flow field to be converted from a 3D problem throughout the field to a 2D problem for finding the potential on the ...One of the key features of Laplace's Equation is the property that allows the equation governing the flow field to be converted from a 3D problem throughout the field to a 2D problem for finding the potential on the surface. The solution is then found using this property by distributing "singularities" of unknown strength over discretized portions of the surface: panels. Hence the flow field solution is found by representing the surface by a number of panels, and solving a linear set of algebraic equations to determine the unknown strengths of the singularities. In this paper a Hess-Smith Panel Method is then used to examine the aerodynamics of NACA 4412 and NACA 23015 wind turbine airfoils. The lift coefficient and the pressure distribution are predicted and compared with experimental result for low Reynolds number. Results show a good agreement with experimental data.展开更多
One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a ...One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a low drag coefficient, thus generating a highly efficient airfoil. The higher the efficiency value is, the lower the aircraft fuel consumption will be; thus improving its performance. In this sense, this work aims to develop a tool for airfoil creation from some desired characteristics, such as the lift and drag coefficients and maximum efficiency rate, using an algorithm based on an ANN (artificial neural network). In order to do so, a database of aerodynamic characteristics with a total of 300 airfoils was initially collected from the XFoil software. Then, through a routine implemented in the MATLAB software, network architectures of one, two, three and four modules were trained, using the back propagation algorithm and momentum. The cross-validation technique was applied to analyze the results, evaluating which network possesses the lowest value in RMS (root-mean-square) error. In this case, the best result obtained was from the two-module architecture with two hidden neuron layers. The airfoils developed by this network, in the regions with the lowest RMS, were compared to the same airfoils imported to XFoil. The presented work offers as a contribution, in relation to other works involving ANN applied to fluid mechanics, the development of airfoils from their aerodynamic characteristics.展开更多
This article presents a novel approach for predicting transition locations over airfoils,which are used to activate turbulence model in a Reynolds-averaged Navier-Stokes flow solver.This approach combines Dynamic Mode...This article presents a novel approach for predicting transition locations over airfoils,which are used to activate turbulence model in a Reynolds-averaged Navier-Stokes flow solver.This approach combines Dynamic Mode Decomposition(DMD)with e^Ncriterion.The core idea is to use a spatial DMD analysis to extract the modes of unstable perturbations from a steady flowfield and substitute the local Linear Stability Theory(LST)analysis to quantify the spatial growth of Tollmien–Schlichting(TS)waves.Transition is assumed to take place at the stream-wise location where the most amplified mode’s N-factor reaches a prescribed threshold and a turbulence model is activated thereafter.To improve robustness,the high-order version of DMD technique(known as HODMD)is employed.A theoretical derivation is conducted to interpret how a spatial highorder DMD analysis can extract the growth rate of the unsteady perturbations.The new method is validated by transition predictions of flows over a low-speed Natural-Laminar-Flow(NLF)airfoil NLF0416 at various angles of attack and a transonic NLF airfoil NPU-LSC-72613.The transition locations predicted by our HODMD/e^Nmethod agree well with experimental data and compare favorably to those obtained by some existing methods■.It is shown that the proposed method is able to predict transition locations for flows over different types of airfoils and offers the potential for application to 3D wings as well as more complex configurations.展开更多
Natural ice accretion on the lifting surface of an aircraft is detrimental to its aerodynamic performance, as it changes the effective streamlined body. The main focus of this work considers the optimization design of...Natural ice accretion on the lifting surface of an aircraft is detrimental to its aerodynamic performance, as it changes the effective streamlined body. The main focus of this work considers the optimization design of airfoils under atmospheric icing conditions for the Unmanned Aerial Vehicle(UAV). The ice formation process is simulated by the Eulerian approach and the three-dimensional Myers model. A three-equation turbulence model is implemented to accurately predict the stall performance of the iced airfoil. In recognition of the real atmospheric variability in the icing parameters, the medium volume diameter of supercooled water droplets is treated as an uncertainty with an assumed probability density function. A technique of polynomial chaos expansion is used to propagate the input uncertainty through the deterministic system. The numerical results show that the multipoint/multiobjective optimization strategy can efficiently improve both the ice tolerance and the cruise performance of an airfoil. The reason for the focus on robust optimization is that the ice angle of the optimized airfoil becomes less critical to the incoming flow.The optimized airfoils are applied to a UAV platform, in which the performance improvement and the relevant key flow feature are both preserved.展开更多
基金funded by University of Guanajuato through Project Convocatoria Institucional de Investigacion Cientifica 2025,161/2025.
文摘This work presents a simulation analysis using a multi-objective evolutionary algorithm for the thermo-hydraulic behavior of staggered heat sinks whose fins have NACA 0040 airfoil profile.The results were compared with a conventional pin fin heat sink with a circular profile.This study searched for the best thermo-hydraulic performance by translational and rotational positioning of the fins.It is worth mentioning that this work was carried out in two stages.In the first stage,the thermo-hydraulic behavior of the heat sink was studied moving the location of the upper array above the X-axis from to 2.25 mm and above the Y-axis from to 1.275 mm.The second stage examined-2.25-1.55the effects of fin rotation considering the results found in stage 1.However,in this second stage,both arrays were free to rotate.For the upper array,the rotation range was-25°to 25° and for the lower array the rotation range was-15° to 15°.It is worth mentioning that both stages were analyzed for a single Reynolds(Re)number value of 13,000.The optimization results using the multi-objective evolutionary algorithm showed that compared to a NACA 0040 heat sink with fixed,unrotated original configuration(C0),the NACA 0040 heat sink with any Position Configuration(PC)did not significantly improve the heat transfer.Then,the results found in the second stage showed that the effect of the rotation of both sets did not influence the increase in pressure drop.However,it was found that with the Optimal Position and Rotation Configuration(PRCoptimal),which is the optimized array from Stage 1(position)then optimized by rotation,there is a slightly higher Performance Evaluation Criterion(PEC)compared to the original C0 configuration by 7%.Finally,the proposed NACA 0040 heat sink with the optimal rotation and position setting(PRCoptimal)was found to have a PEC of 9%compared to a conventional pin fin heat sink.
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
文摘Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force.
文摘A robust optimization design approach of natural laminar airfoils is developed in this paper. First, the non-uniform rational B-splines (NURBS) free form deformation method based on NURBS basis function is introduced to the airfoil parameterization. Second, aerodynamic characteristics are evaluated by solving Navier-Stokes equations, and theγ-Reθt transition model coupling with shear-stress transport (SST) turbulent model is introduced to simulate boundary layer transition. A numerical simulation of transition flow around NLF0416 airfoil is conducted to test the code. The comparison between numerical simulation results and wind tunnel test data approves the validity and applicability of the present transition model. Third, the optimization system is set up, which uses the separated particle swarm optimization (SPSO) as search algorithm and combines the Kriging models as surrogate model during optimization. The system is applied to carry out robust design about the uncertainty of lift coefficient and Mach number for NASA NLF-0115 airfoil. The data of optimized airfoil aerodynamic characteristics indicates that the optimized airfoil can maintain laminar flow stably in an uncertain range and has a wider range of low drag.
基金co-supported by the National Key Research and Development Program of China(No.:2017YFB1300102)the National Natural Science Foundation of China(No.:11872314)。
文摘Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to flapping airfoils.The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation with Spalart-Allmaras(SA)turbulence model.Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case.Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion,with Reynolds number 70,000 and reduced frequency 0.2.As a result,CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμgreater than 0.04,which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer.Besides,typical kinematic and geometric parameters,including the reduced frequency and the positions of the suction and injection slot,are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil.And a variable Cμjet control strategy is proposed to further improve effective propulsive efficiency.Compared with using constant Cμ,an increase of effective propulsive efficiency by22.6%has been achieved by using prescribed variable CμNACA6415-based CFJ airfoil at frequency 0.2.This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles(FMAV).
基金supported by the National Natural Science Foundation of China(Nos.92052203,12202243 and 11872230).
文摘Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-dimensional problems are so high that it is often too expensive to prepare sufficient samples.Therefore,transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for threedimensional problems.This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings,where the simple swept theory is embedded to improve the prediction accuracy.Two baseline models are investigated:one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry,and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution.Two transfer learning strategies are compared for both baseline models.The transferred models are then tested on complete wings.The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions.Compared to the two baseline models,the transferred models reduce the prediction error by 60%and 80%,respectively.
基金supported by Maric Curie actions EST project FLUBIO(Grant:MEST-CT-2005-020228)support of the HPC-Europa++ project(Project number:211437)support of the European Community-Research Infrastructure Action of the FP7
文摘In the present work,a parametric numerical study is conducted in order to assess the effect of airfoil cambering on the aerodynamic performance of rigid heaving airfoils.The incompressible Navier-Stokes equations are solved in their velocity-pressure formulation using a second-order accurate in space and time finite-difference scheme.To tackle the problem of moving boundaries,the governing equations are solved on overlapping structured grids.The numerical simulations are performed at a Reynolds number of Re=1100 and at different values of Strouhal number and reduced frequency.The results obtained show that the airfoil cambering geometric parameter has a strong influence on the average lift coefficient,while it has a smaller impact on the average thrust coefficient and propulsive efficiency of heaving airfoils.
文摘The objective of this project is to improve the performance of the efficiency, thrust and lift of flapping wings in tandem arrangement. This research investigates the effect of the arrangement of the airfoils in tandem on the performance of the airfoils by varying the phase difference and distance between the airfoils. Three flapping configurations from an earlier phase of a research which gives high efficiency, thrust and lift are used in the tandem simulation. It is found all the different flapping configurations show improvement in the efficiency, thrust or lift when the distance between the two airfoils and the phase angle between the heaving positions of the two airfoils are optimal. The average thrust coefficient of the tandem arrangement managed to attain more than twice that of the single one (4.84 vs. 2.05). On the other hand, the average lift coefficient of the tandem arrangement also increased to 4.59, as compared to the original single airfoil value of 3.04. All these results obtained will aid in the design of a better ornithopter with tandem wing arrangement.
基金Supported by the National Natural Science Foundation of China(No.51205430)Natural Science Foundation of ChongQing(No.cstc2011ijA70002)China Postdoctoral Science Foundation(No.2013T60842)
文摘To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method.
基金supported by the National Natural Science Foundation of China(No.11872314)the Key R&D Program in Shaanxi Province of China(No.2020GY-154)。
文摘The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influences the lift performance and flow pattern of flapping airfoils.Firstly, the numerical methods are validated by a NACA0012 airfoil pitching case and a NACA0012 airfoil plunging case. Then, the E377m airfoil which has typical geometric characteristics of the bird-like airfoil is selected as the calculation model to study how phase differences φ1 between surging motion and plunging motion affect the aerodynamic performance of flapping airfoils. The results show that the airfoil with surging motion has comprehensively better lift performance and thrust performance than the airfoil without surging motion when 15°< φ1< 90°. It is demonstrated that surging motion has a powerful ability to improve the aerodynamic performance of flapping airfoil by adjusting φ1. Finally, to further explore how flapping airfoil improves lift performance by considering surging motion, the flapping motions of E377m airfoil with the highest lift coefficient and lift efficiency are obtained through trajectory optimization. The surging motion is removed in the highest lift case and highest lift efficiency case respectively, and the mechanism that surging motion adjusts the aerodynamic force is analyzed in detail by comparing the vortex structure and kinematic parameters. The results of this paper help reveal the aerodynamic mechanism of bird flight and guide the design of Flapping wing Micro Air Vehicles(FMAV).
基金Supported by the National Science Foundation for Post-doctoral Scientists of China (20090460216 )the National Defense Fundamental Research Foundation of China(B222006060)
文摘A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient.
文摘In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal of this study is to gain a better understanding and to find the possible ways for enhancing the aerodynamic efficients. The experimental investigations are carried out in two low-speed wind tunnels. The test models are two dimensional airfoils with different section geometries. Four means of excitations have been used in these experiments. (1) The pitch oscillation of the airfoil high-angle-of-attack situation. (2) The moving surface effects of the airfoil with a leading edge rotating cylinder. (3) Oscillating leading edge flaperon. (4) Small oscillating spoiler located near the leading edge of the airfoil. The lift, drag and pitch moment coefficients are measured in these experiments. But, we will put the emphasis only on the 'dynamic amplifying effects' on aerodynamic lift in this paper. Results obtained indicate that the beneficial aerodynamic effects of section lift increase can be obtained at the high angle of attack near stall regime, as long as the frequency and amplitute of the excitation are appropriately selected.
基金Supported by National 863 Plan Project of Ministry of Science and Technology of China under Grant No. 2006AA09Z354National Natural Science Foundation of China under Grant No. 10672101.
文摘In this paper, an efficient multigrid fictitious boundary method (MFBM) coupled with the FEM solver package FEATFLOW was used for the detailed simulation of incompressible viscous flows around one or more moving NACA0012 airfoils. The calculations were carded on a fixed multigrid finite element mesh on which fluid equations were satisfied everywhere, and the airfoils were allowed to move freely through the mesh. The MFBM was employed to treat interactions between the fluid and the airfoils The motion of the airfoils was modeled by Newton-Euler equations. Numerical results of experiments verify that this method provides an efficient way to simulate incompressible viscous flows around moving airfoils.
文摘Transient aerodynamic characteristics of airfoil are important for the safety of airplanes, the development of helicopter rotors and many other applications of unsteady aerodynamics. For a better understanding of these phenomena, it is necessary to investigate the simultaneous relation between the characteristics and the flow field. The purpose of the present study is to clarify experimentally the fundamentals of the aerodynamic behaviours associated with stepwise incidence variations from 0 to some certain values, including high angles of attack, of symmetric airfoils at low speeds, Reynolds number being of the order of 104. Temporal variations of surface pressure distribution, lift, drag and . pitching moment, and the observation of the flow field will be discussed.
文摘Through transformations, the time-dependent boundary condition on the airfoil contour and the boundary condition at infinity are brought fixed to the boundaries of a finite domain. The boundary conditions can thus be satisfied exactly without increasing the computational time. The novel scheme is useful for computing transonic, strong disturbance, unsteady flows with high reduced frequencies. The scheme makes use of curvefitted orthogonal meshes and the lattice control technique to obtain the optimal grid distribution. The numerical results are satisfactory.
文摘One of the key features of Laplace's Equation is the property that allows the equation governing the flow field to be converted from a 3D problem throughout the field to a 2D problem for finding the potential on the surface. The solution is then found using this property by distributing "singularities" of unknown strength over discretized portions of the surface: panels. Hence the flow field solution is found by representing the surface by a number of panels, and solving a linear set of algebraic equations to determine the unknown strengths of the singularities. In this paper a Hess-Smith Panel Method is then used to examine the aerodynamics of NACA 4412 and NACA 23015 wind turbine airfoils. The lift coefficient and the pressure distribution are predicted and compared with experimental result for low Reynolds number. Results show a good agreement with experimental data.
文摘One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a low drag coefficient, thus generating a highly efficient airfoil. The higher the efficiency value is, the lower the aircraft fuel consumption will be; thus improving its performance. In this sense, this work aims to develop a tool for airfoil creation from some desired characteristics, such as the lift and drag coefficients and maximum efficiency rate, using an algorithm based on an ANN (artificial neural network). In order to do so, a database of aerodynamic characteristics with a total of 300 airfoils was initially collected from the XFoil software. Then, through a routine implemented in the MATLAB software, network architectures of one, two, three and four modules were trained, using the back propagation algorithm and momentum. The cross-validation technique was applied to analyze the results, evaluating which network possesses the lowest value in RMS (root-mean-square) error. In this case, the best result obtained was from the two-module architecture with two hidden neuron layers. The airfoils developed by this network, in the regions with the lowest RMS, were compared to the same airfoils imported to XFoil. The presented work offers as a contribution, in relation to other works involving ANN applied to fluid mechanics, the development of airfoils from their aerodynamic characteristics.
基金supported by the National Natural Science Foundation of China (No. 11772261)the Aeronautical Science Foundation of China (No. 2016ZA53011)+1 种基金the ATCFD Project (No. 2015-F-016)the 111 Project of China (No. B17037)
文摘This article presents a novel approach for predicting transition locations over airfoils,which are used to activate turbulence model in a Reynolds-averaged Navier-Stokes flow solver.This approach combines Dynamic Mode Decomposition(DMD)with e^Ncriterion.The core idea is to use a spatial DMD analysis to extract the modes of unstable perturbations from a steady flowfield and substitute the local Linear Stability Theory(LST)analysis to quantify the spatial growth of Tollmien–Schlichting(TS)waves.Transition is assumed to take place at the stream-wise location where the most amplified mode’s N-factor reaches a prescribed threshold and a turbulence model is activated thereafter.To improve robustness,the high-order version of DMD technique(known as HODMD)is employed.A theoretical derivation is conducted to interpret how a spatial highorder DMD analysis can extract the growth rate of the unsteady perturbations.The new method is validated by transition predictions of flows over a low-speed Natural-Laminar-Flow(NLF)airfoil NLF0416 at various angles of attack and a transonic NLF airfoil NPU-LSC-72613.The transition locations predicted by our HODMD/e^Nmethod agree well with experimental data and compare favorably to those obtained by some existing methods■.It is shown that the proposed method is able to predict transition locations for flows over different types of airfoils and offers the potential for application to 3D wings as well as more complex configurations.
基金supported by the National Key Project of China(No.GJXM92579)the National Natural Science Foundation of China(Nos.92052203 and 11872230 and 91852108)。
文摘Natural ice accretion on the lifting surface of an aircraft is detrimental to its aerodynamic performance, as it changes the effective streamlined body. The main focus of this work considers the optimization design of airfoils under atmospheric icing conditions for the Unmanned Aerial Vehicle(UAV). The ice formation process is simulated by the Eulerian approach and the three-dimensional Myers model. A three-equation turbulence model is implemented to accurately predict the stall performance of the iced airfoil. In recognition of the real atmospheric variability in the icing parameters, the medium volume diameter of supercooled water droplets is treated as an uncertainty with an assumed probability density function. A technique of polynomial chaos expansion is used to propagate the input uncertainty through the deterministic system. The numerical results show that the multipoint/multiobjective optimization strategy can efficiently improve both the ice tolerance and the cruise performance of an airfoil. The reason for the focus on robust optimization is that the ice angle of the optimized airfoil becomes less critical to the incoming flow.The optimized airfoils are applied to a UAV platform, in which the performance improvement and the relevant key flow feature are both preserved.