期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
打造算网智一体化AI-Native算力网络 推动全国一体化算力网纵深发展 被引量:2
1
作者 李莹 王升 张昊 《通信世界》 2025年第11期22-23,共2页
在以万物感知、万物互联、万物智能为特征的数字经济时代,算力已成为全球科技竞争的重要战场。全球算力基础设施建设提速,算力技术加速迭代,赋能作用持续显现,产业竞争持续加剧,算网协同程度逐步加深。我国政府精准把握算力时代发展脉搏... 在以万物感知、万物互联、万物智能为特征的数字经济时代,算力已成为全球科技竞争的重要战场。全球算力基础设施建设提速,算力技术加速迭代,赋能作用持续显现,产业竞争持续加剧,算网协同程度逐步加深。我国政府精准把握算力时代发展脉搏,近年来相继出台《全国一体化大数据中心协同创新体系算力枢纽实施方案》《关于加快构建全国一体化算力网的实施意见》《算力基础设施高质量发展行动计划》等多项政策文件。 展开更多
关键词 ai-native 算力网络 算网智一体化
在线阅读 下载PDF
Exploration of NWDAF Development Architecture for 6G AI-Native Networks
2
作者 HE Shiwen PENG Shilin +2 位作者 DONG Haolei WANG Liangpeng AN Zhenyu 《ZTE Communications》 2025年第1期45-52,共8页
Artificial intelligence(AI)-native communication is considered one of the key technologies for the development of 6G mobile communication networks.This paper investigates the architecture for developing the network da... Artificial intelligence(AI)-native communication is considered one of the key technologies for the development of 6G mobile communication networks.This paper investigates the architecture for developing the network data analytics function(NWDAF)in 6G AI-native networks.The architecture integrates two key components:data collection and management,and model training and management.It achieves real-time data collection and management,establishing a complete workflow encompassing AI model training,deployment,and intelligent decision-making.The architecture workflow is evaluated through a vertical scaling use case by constructing an AI-native network testbed on Kubernetes.Within this proposed NWDAF,several machine learning(ML)models are trained to make vertical scaling decisions for user plane function(UPF)instances based on data collected from various network functions(NFs).These decisions are executed through the Ku-bernetes API,which dynamically allocates appropriate resources to UPF instances.The experimental results show that all implemented models demonstrate satisfactory predictive capabilities.Moreover,compared with the threshold-based method in Kubernetes,all models show a significant advantage in response time.This study not only introduces a novel AI-native NWDAF architecture but also demonstrates the potential of AI models to significantly improve network management and resource scaling in 6G networks. 展开更多
关键词 6G ai-native NWDAF UPF scaling
在线阅读 下载PDF
Resource allocation for AI-native healthcare systems in 6G dense networks using deep reinforcement learning
3
作者 Jianhui Lv Chien-Ming Chen +1 位作者 Saru Kumari Keqin Li 《Digital Communications and Networks》 2025年第6期2016-2029,共14页
Although 6G networks combined with artificial intelligence present revolutionary prospects for healthcare delivery,resource management in dense medical device networks stays a basic issue.Reliable communication direct... Although 6G networks combined with artificial intelligence present revolutionary prospects for healthcare delivery,resource management in dense medical device networks stays a basic issue.Reliable communication directly affects patient outcomes in these settings;nonetheless,current resource allocation techniques struggle with complicated interference patterns and different service needs of AI-native healthcare systems.In dense installations where conventional approaches fail,this paper tackles the challenge of combining network efficiency with medical care priority.Thus,we offer a Dueling Deep Q-Network(DDQN)-based resource allocation approach for AI-native healthcare systems in 6G dense networks.First,we create a point-line graph coloringbased interference model to capture the unique characteristics of medical device communications.Building on this foundation,we suggest a DDQN approach to optimal resource allocation over multiple medical services by combining advantage estimate with healthcare-aware state evaluation.Unlike traditional graph-based models,this one correctly depicts the overlapping coverage areas common in hospital environments.Building on this basis,our DDQN design allows the system to prioritize medical needs while distributing resources by separating healthcare state assessment from advantage estimation.Experimental findings show that the suggested DDQN outperforms state-of-the-art techniques in dense healthcare installations by 14.6%greater network throughput and 13.7%better resource use.The solution shows particularly strong in maintaining service quality under vital conditions with 5.5%greater Qo S satisfaction for emergency services and 8.2%quicker recovery from interruptions. 展开更多
关键词 Resource allocation ai-native healthcare systems 6G dense networks Deep reinforcement learning
在线阅读 下载PDF
通信软件智能静态分析系统研究
4
作者 蔡汝健 池鸿源 +3 位作者 汤斯鹏 许学研 张洁辉 赖源海 《通信与信息技术》 2025年第6期125-128,共4页
提出并验证了面向通信行业的LLM-SAST静态分析系统,通过融合大语言模型(LLM)与符号推理技术,解决了传统工具在5G/6G软件开发中面临的协议复杂性高、误报率高等核心问题。系统采用领域自适应预训练、混合检测机制和轻量化部署三大创新技... 提出并验证了面向通信行业的LLM-SAST静态分析系统,通过融合大语言模型(LLM)与符号推理技术,解决了传统工具在5G/6G软件开发中面临的协议复杂性高、误报率高等核心问题。系统采用领域自适应预训练、混合检测机制和轻量化部署三大创新技术,在5G核心网代码分析中实现93.2%的准确率(较传统工具提升40%以上),并成功应用于AMF模块漏洞检测(异常释放率降低82%)和基站调度器死锁预测等实际场景。实验表明,系统在边缘设备部署时延(<100ms)和资源消耗(内存<2GB)方面均满足电信级要求。尽管面临协议动态适配、实时性优化等挑战,通过动态架构演进和安全增强设计,该系统为6G时代的AI-Native通信软件开发提供了关键技术基础,推动行业向智能化、自动化范式转型。 展开更多
关键词 大语言模型 静态分析 通信软件 5G/6G开发 协议一致性 轻量化部署 ai-native
在线阅读 下载PDF
Autonomous Network Technology Innovation in Digital and Intelligent Era 被引量:1
5
作者 DUAN Xiangyang KANG Honghui ZHANG Jianjian 《ZTE Communications》 2022年第4期52-61,共10页
The issues of wireless communication network autonomy,the definition of capability level and the concept of AI-native solution based on the integration of the information communication data technology(ICDT)are first i... The issues of wireless communication network autonomy,the definition of capability level and the concept of AI-native solution based on the integration of the information communication data technology(ICDT)are first introduced in this paper.A series of innovative technologies proposed by ZTE Corporation,such as an autonomous evolution network and intelligent orchestration network,are then analyzed.These technologies are developed to realize the evolution of wireless networks to Level-4 and Level-5 intelligent networks.It is expected that the future AI-native intelligent network system will be built based on innovative technologies such as digital twins,intent-based networking,and the data plane and intelligent plane.These new technical paradigms will promote the development of intelligent B5G and 6G networks. 展开更多
关键词 autonomous network digtal twin ai-native
在线阅读 下载PDF
面向6G移动通信的内生智能方法研究
6
作者 吴修赞 韩龙哲 《微型计算机》 2026年第3期94-96,共3页
在5G技术的逐步成熟与应用的背景下,移动通信系统正向以智能为核心特征的第六代移动通信(6G)演进。与以往的代际演进不同,6G不仅追求更高的数据速率与更广的覆盖能力,而且更重要的是实现智能内生化(Intelligence-Endogenous),即让人工智... 在5G技术的逐步成熟与应用的背景下,移动通信系统正向以智能为核心特征的第六代移动通信(6G)演进。与以往的代际演进不同,6G不仅追求更高的数据速率与更广的覆盖能力,而且更重要的是实现智能内生化(Intelligence-Endogenous),即让人工智能(AI)成为网络体系的内在属性而非外部附属功能。AI-Native网络架构通过在核心网、接入网及边缘节点深度融合AI算法,实现网络的自感知、自决策与自优化。文章综述了近年来AINative与智能内生网络(Intelligence-Endogenous Network,IEN)架构的研究进展,重点分析了体系架构设计、任务导向服务机制、边缘智能与分布式学习、可信与可解释AI、自演化核心网与资源编排等关键方向。通过对之前文献的研读,阐述了当前研究的核心理念与典型方法,指出现有工作在标准化接口、能效优化、智能可信与多层协同等方面的不足,并展望了未来6G网络从AI-Native向认知驱动演化的趋势。 展开更多
关键词 6G ai-native 智能内生网络 边缘智能 自演化 可信AI
在线阅读 下载PDF
Integrated AI and Communications:A Two-Way Catalysis Toward 6G and Beyond
7
作者 Xiang Cheng Jianan Zhang +6 位作者 Ning Ding Nan Li Yong Li Tailin Wu Wei Xu Jun Zhang Qi Sun 《Journal of Communications and Information Networks》 2025年第3期191-200,共10页
Artificial intelligence(AI)and wireless communications are catalyzing each other’s advancement as we approach 6G networks and beyond.This article presents a perspective on the two-way interplay between AI and communi... Artificial intelligence(AI)and wireless communications are catalyzing each other’s advancement as we approach 6G networks and beyond.This article presents a perspective on the two-way interplay between AI and communications-how AI techniques are revolutionizing communication network design(AI4Comm)and how emerging communication technologies are enabling and accelerating AI(Comm4AI).We discuss recent advances and outline the challenges in realizing an AI-native wireless ecosystem and propose a roadmap for integrating AI and communications,offering insights into a future where wireless communications and AI evolve together. 展开更多
关键词 6G artificial intelligence ai-native networks wireless communications foundation models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部